Теория вероятности кто открыл


Теория вероятностей и основные понятия теории - База знаний «РБ»

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие. Событие бывает:

  1. Достоверное (всегда происходит в результате испытания).
  2. Невозможное (никогда не происходит).
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие — монета станет на ребро, случайное событие — выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием. В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.

Основные понятия теории

Вероятность — степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — маловероятным или невероятным.

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство — понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство — это тройка  (иногда обрамляемая угловыми скобками: , где

•  — это произвольное множество, элементы которого называются элементарными событиями, исходами или точками; •  — сигма-алгебра подмножеств , называемых (случайными) событиями; •  — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра-Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из  независимых испытаний вероятность появления некоторого случайного события  равна  () и  — число испытаний, в которых  фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание — среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской — . В статистике часто используют обозначение .

Пусть задано вероятностное пространство  и определенная на нем случайная величина . То есть, по определению,  — измеримая функция. Тогда, если существует интеграл Лебега от  по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины — мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается  в русской литературе и  в зарубежной. В статистике часто употребляется обозначение  или . Квадратный корень из дисперсии  называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть  — случайная величина, определенная на некотором вероятностном пространстве. Тогда

где символ  обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми, если значение одной из них влияет на вероятность значений другой.

Условная вероятность — вероятность одного события при условии, что другое событие уже произошло.

Пусть  — фиксированное вероятностное пространство. Пусть  два случайных события, причем . Тогда условной вероятностью события  при условии события  называется . Закон больших чисел — это группа теорем, устанавливающих устойчивость средних результатов большого количества случайных явлений и объясняющих причину этой устойчивости.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел — совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

bookmaker-ratings.ru

Теория вероятностей - это... Что такое Теория вероятностей?

Тео́рия вероя́тностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

История

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей[1]. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год)[2].

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Основные понятия теории

См. также

Ссылки

  • Теория вероятностей//Большая советская энциклопедия

Литература

# А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

А

  • Ахтямов, А. М. «Экономико-математические методы» : учеб. пособие Башк. гос. ун-т. — Уфа : БГУ, 2007.
  • Ахтямов, А. М. «Теория вероятностей». — М.: Физматлит, 2009

Б

  • Боровков, А. А. «Математическая статистика», М.: Наука, 1984.
  • Боровков, А. А. «Теория вероятностей», М.: Наука, 1986.
  • Булдык, Г. М. «Теория вероятностей и математическая статистика», Мн., Высш. шк., 1989.
  • Булинский, А. В., Ширяев, А. Н. «Теория случайных процессов», М.: Физматлит, 2003.
  • Бекарева, Н. Д. «Теория вероятностей. Конспект лекций», Новосибирск НГТУ
  • Баврин, И. И. « Высшая математика» (Часть 2 «Элементы теории вероятностей и математической статистики»), М.: Наука, 2000.

В

Г

  • Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. — М.: Наука, 1977.
  • Гмурман, В. Е. «Теория вероятностей и математическая статистика»: Учеб. пособие — 12-е изд., перераб.- М.: Высшее образование, 2006.-479 с.:ил (Основы наук).
  • Гмурман, В. Е. «Руководство к решению задач по теории вероятностей и математической статистике»: Учеб. пособие — 11-е изд., перераб. — М.: Высшее образование, 2006.-404 с. (Основы наук).
  • Гнеденко, Б. В. «Курс теории вероятностей», — М.: Наука, 1988.
  • Гнеденко, Б. В. «Курс теории вероятностей», УРСС. М.: 2001.
  • Гнеденко Б. В., Хинчин А. Я. «Элементарное введение в теорию вероятностей», 1970.
  • Горбань, И. И. «Теория гиперслучайных явлений: физические и математические основы» – К.: Наукова думка, 2011. – 318 с.
  • Горбань, И. И. «Справочник по теории случайных функций и математической статистике», Киев: Институт кибернетики им. В. М. Глушкова НАН Украины, 1998.
  • Гурский Е. И. «Сборник задач по теории вероятностей и математической статистике», — Минск: Высшая школа, 1975.

Д

  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.

Е

  • А. В. Ефимов, А. Е. Поспелов и др. 4 часть // Сборник задач по математике для втузов. — 3-е изд., перераб. и дополн.. — М.: «Физматлит», 2003. — Т. 4. — 432 с. — ISBN 5-94052-037-5

К

  • Колемаев, В. А. и др. «Теория вероятностей и математическая статистика», — М.: Высшая школа, 1991. http://www.iqlib.ru/book/preview/b0ce99dc4e1741128564b81841ae6ce0
  • Колмогоров, А. Н. «Основные понятия теории вероятностей», М.: Наука, 1974.
  • Коршунов, Д. А., Фосс, С. Г. «Сборник задач и упражнений по теории вероятностей», Новосибирск, 1997.
  • Коршунов, Д. А., Чернова, Н. И. «Сборник задач и упражнений по математической статистике», Новосибирск. 2001.
  • Кремер Н. Ш. Теория вероятностей и математическая статистика: Учебник для ВУЗов. — 2- изд., перераб. и доп.-М:ЮНИТИ-ДАНА, 2004. — 573 с.
  • Кузнецов, А. В. «Применение критериев согласия при математическом моделировании экономических процессов», Мн.: БГИНХ, 1991.

Л

  • Лихолетов И. И., Мацкевич И. Е. «Руководство к решению задач по высшей математике, теории вероятностей и математической статистике», Мн.: Выш. шк., 1976.
  • Лихолетов И. И. «Высшая математика, теория вероятностей и математическая статистика», Мн.: Выш. шк., 1976.
  • Лоэв М.В «Теория вероятностей», — М.: Издательство иностранной литературы, 1962.

М

  • Маньковский Б. Ю., «Таблица вероятности».
  • Мацкевич И. П., Свирид Г. П. «Высшая математика. Теория вероятностей и математическая статистика», Мн.: Выш. шк., 1993.
  • Мацкевич И. П., Свирид Г. П., Булдык Г. М. «Сборник задач и упражнений по высшей математике. Теория вероятностей и математическая статистика», Мн.: Выш. шк., 1996.
  • Мейер П.-А. Вероятность и потенциалы. Издательство Мир, Москва, 1973.
  • Млодинов Л. (Не)совершенная случайность

П

  • Прохоров, А. В., В. Г. Ушаков, Н. Г. Ушаков. «Задачи по теории вероятностей», Наука. М.: 1986.
  • Прохоров Ю. В., Розанов Ю. А. «Теория вероятностей», — М.: Наука, 1967.
  • Пугачев, В. С. «Теория вероятностей и математическая статистика», Наука. М.: 1979.

Р

  • Ротарь В. И., «Теория вероятностей», — М.: Высшая школа, 1992.

С

  • Свешников А. А. и др., «Сборник задач по теории вероятностей, математической статистике и теории случайных функций», — М.: Наука, 1970.
  • Свирид, Г. П., Макаренко, Я. С., Шевченко, Л. И. «Решение задач математической статистики на ПЭВМ», Мн., Выш. шк., 1996.
  • Севастьянов Б. А., «Курс теории вероятностей и математической статистики», — М.: Наука, 1982.
  • Севастьянов, Б. А., Чистяков, В. П., Зубков, А. М. «Сборник задач по теории вероятностей», М.: Наука, 1986.
  • Соколенко А. И., «Высшая математика», учебник. М.: Академия, 2002.

Ф

  • Феллер, В. «Введение в теорию вероятностей и её приложения».

Х

  • Хамитов, Г. П., Ведерникова, Т. И. «Вероятности и статистики», БГУЭП. Иркутск.: 2006.

Ч

  • Чистяков, В. П. «Курс теории вероятностей», М., 1982.
  • Чернова, Н. И. «Теория вероятностей», Новосибирск. 2007.

Ш

  • Шейнин О. Б. Теория вероятностей. Исторический очерк. Берлин: NG Ferlag, 2005, 329 с.
  • Ширяев, А. Н. «Вероятность», Наука. М.: 1989.
  • Ширяев, А. Н. «Основы стохастической финансовой математики В 2-х т.», ФАЗИС. М.: 1998.

Примечания

dic.academic.ru

Теория вероятностей. Базовые термины и понятия

Мама мыла раму

Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой вёрдовский файл, чтобы приступить к созданию нового раздела – Теория вероятностей и математическая статистика. Признаюсь, нелегко даются первые строчки, но первый шаг – это пол пути, поэтому я предлагаю всем внимательно проштудировать вводную статью, после чего осваивать тему будет в 2 раза проще! Ничуть не преувеличиваю. …Накануне очередного 1 сентября вспоминается первый класс и букварь…. Буквы складываются в слоги, слоги в слова, слова в короткие предложения – Мама мыла раму. Совладать с тервером и математической статистикой так же просто, как научиться читать! Однако для этого необходимо знать ключевые термины, понятия и обозначения, а также некоторые специфические правила, которым и посвящён данный урок.

Но сначала примите мои поздравления с началом (продолжением, завершением, нужное отметить) учебного года и примите подарок. Лучший подарок – это книга, и для самостоятельной работы я рекомендую следующую литературу:

1) Гмурман В.Е. Теория вероятностей и математическая статистика

Легендарное учебное пособие, выдержавшее более десяти переизданий. Отличается доходчивостью и предельной простой изложения материала, а первые главы так и вовсе доступны, думаю, уже для учащихся 6-7-х классов.

2) Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике

Решебник того же Владимира Ефимовича с подробно разобранными примерами и задачами.

ОБЯЗАТЕЛЬНО закачайте обе книги из Интернета или раздобудьте их бумажные оригиналы! Подойдёт и версия 60-70-х годов, что даже лучше для чайников. Хотя фраза «теория вероятностей для чайников» звучит довольно нелепо, поскольку почти всё ограничивается элементарными арифметическими действиями. Проскакивают, правда, местами производные и интегралы, но это только местами.

Я постараюсь достичь той же ясности изложения, но должен предупредить, что мой курс ориентирован на решение задач и теоретические выкладки сведены к минимуму. Таким образом, если вам нужна развёрнутая теория, доказательства теорем (теорем-теорем!), пожалуйста, обратитесь к учебнику. Ну, а кто хочет научиться решать задачи по теории вероятностей и математической статистике в самые короткие сроки, следуйте за мной!

Рекомендуемый порядок изучения темы:

Эта статья; Задачи по комбинаторике. Примеры решений; Задачи на классическое определение вероятности; Геометрическое определение вероятности; Теоремы сложения и умножения вероятностей; Зависимые события; Формула полной вероятности и формулы Байеса; Независимые испытания и формула Бернулли; Локальная и интегральная теоремы Лапласа; Статистическое определение вероятности.

Для начала хватит =)

По мере прочтения статей целесообразно знакомиться (хотя бы бегло) с дополнительными задачами рассмотренных видов. На странице Готовые решения по высшей математике будут размещаться соответствующие pdf-ки с примерами решений. Также значительную помощь окажут ИДЗ 18.1 Рябушко (попроще) и прорешанные ИДЗ по сборнику Чудесенко (посложнее).

Кроме того, на складе математических формул и таблиц полезно открыть/закачать/распечатать вспомогательные справочные файлы – Основные формулы комбинаторики и Основные формулы теории вероятностей..

Итак, дорожные указатели расставлены, и мы начинаем путь с теории вероятностей, которую неоднократно просили осветить посетители сайта.

Первое и очень важное. Что изучает эта наука? Многим в голову наверняка пришли мысли вроде «вероятность дождя велика», «вероятность выигрыша в лотерею мала», «орёл и решка выпадают с вероятностью 50 на 50» и т.п. Но тогда сразу возникает вопрос, при чём здесь наука? Пожалуйста, прямо сейчас возьмите в руки монету и скажите, какой гранью она выпадет после броска? …Совсем не похоже на теорию – скорее какое-то гадание….

И действительно, обывательское понимание вероятности больше смахивает на некое предсказание, часто с изрядной долей мистицизма и суеверий. Теория же вероятностей изучает вероятностные закономерности массовых однородных случайных событий. То есть, у неё нет цели что-либо угадать, например, результат броска той же монеты в единичном эксперименте. Однако если одну и ту же монету в одинаковых условиях подбрасывать сотни и тысячи раз, то будет прослеживаться чёткая закономерность, описываемая вполне жёсткими законами.

Другой пример. Вокруг каждого из нас летают молекулы воздуха. Некоторые из них обладают высокой, некоторые средней, а некоторые – низкой скоростью. Не имеет смысла угадывать скорость отдельно взятых молекул; но их массовый учёт находит самое широкое применение в теоретических и прикладных физических исследованиях. Обратите внимание, что самолёты «умеют» летать, газовые и паровые котлы обычно не взрываются, а чайники при кипении не скачут по кухне. За многими и многими, казалось бы, обыденными фактами и событиями кроются серьёзные вероятностно-статистические расчёты.

Или пример попроще. Если вы приобретёте лотерейный билет, то вряд ли что-то выиграете и совсем невероятно, что сорвёте крупный куш. Но организатор лотереи даже при случайном розыгрыше тиража (извлечение пронумерованных шариков и т.п. либо если участники сами угадывают номера) гарантированно и с высокой точностью знает, сколько билетов выиграют/проиграют, и, понятно, остаётся в прибыли. Лотереи часто называют обманом, однако парадокс состоит в том, что эта гарантия строго обоснована теорией; рАвно, как и житейская фраза «всё равно ничего не выиграю». Думаю, теперь все поняли правильный способ заработка на лотереях =) Впрочем, мы ещё вернёмся к «секретам» выигрыша в рулетку и различные лотереи.

Да, кстати подумайте ещё над одной насущной задачей: многие из нас за жизнь сдают десятки экзаменов, и практически всегда имеет место следующая ситуация: часть вопросов студент знает (либо заготовлены шпоры), а часть вопросов – не знает (либо плавает как мастер спорта). Наступает день «X»: утро, коридор с 10-15 однокурсниками и дверь, за которой на столе лежит полный комплект билетов. В каком случае вероятнее сдать экзамен – если идти «в первых рядах», «в серединке» или если зайти в аудиторию в числе последних? …Изучаем теорию вероятностей!

Сначала разбираемся с основными терминами, которые ниже по тексту я буду выделять жирным курсивом. Обращаю ваше внимание, что это ИМЕННО ТЕРМИНЫ, а не «просто слова»!

События. Виды событий

Одно из базовых понятий тервера уже озвучено выше – это событие. События бывают достоверными, невозможными и случайными.

Достоверным называют событие, которое в результате испытания (осуществления определенных действий, определённого комплекса условий) обязательно произойдёт. Например, в условиях земного тяготения подброшенная монета непременно упадёт вниз.

Невозможным называют событие, которое заведомо не произойдёт в результате испытания. Пример невозможного события: в условиях земного тяготения подброшенная монета улетит вверх.

И, наконец, событие называется случайным, если в результате испытания оно может, как произойти, так и не произойти, при этом должен иметь место принципиальный критерий случайности: случайное событие – есть следствие случайных факторов, воздействие которых предугадать невозможно или крайне затруднительно. Пример: в результате броска монеты выпадет «орёл».  В рассмотренном случае случайные факторы – это форма и физические характеристики монеты, сила/направление броска, сопротивление воздуха и т.д.

Подчёркнутый критерий случайности очень важен – так, например, карточный шулер может очень ловко имитировать случайность и давать выигрывать жертве, но ни о каких случайных факторах, влияющих на итоговый результат, речи не идёт.

Любой результат испытания называется исходом, который, собственно и представляет собой появление определённого события. В частности, при подбрасывании монеты возможно 2 исхода (случайных события): выпадет орёл, выпадет решка. Естественно, подразумевается, что данное испытание проводится в таких условиях, что монета не может встать на ребро или, скажем, зависнуть в невесомости.

События (любые) обозначают большими латинскими буквами  либо теми же буквами с подстрочными индексами, например: . Исключение составляет буква , которая зарезервирована под другие нужды.

Запишем следующие случайные события:

 – в результате броска монеты выпадет «орёл»;  – в результате броска игральной кости (кубика) выпадет 5 очков;  – из колоды будет извлечена карта трефовой масти (по умолчанию колода считается полной).

Да, события прямо так и записывают в практических задачах, при этом в уместных случаях удобно использовать «говорящие» подстрочные индексы (хотя можно обойтись и без них).

Следует в третий раз подчеркнуть, что случайные события обязательно удовлетворяют вышеприведённому критерию случайности. В этом смысле снова показателен 3-й пример: если из колоды изначально удалить все карты трефовой масти, то событие  становится невозможным. Наоборот, если испытателю известно, что, например, дама треф лежит снизу, то он при желании может сделать событие  достоверным =) Таким образом, в данном примере предполагается, что карты хорошо перемешаны и их рубашки неразличимы, т.е. колода не является краплёной. Причём, здесь под «крапом» понимаются даже не «умелые руки», ликвидирующие случайность вашего выигрыша, а видимые дефекты карт. Например, рубашка той же дамы треф может быть грязной, порванной, заклеенной скотчем… блин, какое-то пособие для начинающего чикатило получилось =)

Таким образом, при розыгрыше важного жребия всегда есть смысл невзначай посмотреть, а не одинаковы ли грани монеты ;-)

Другая важная характеристика событий – это их равновозможность. Два или бОльшее количество событий называют равновозможными, если ни одно из них не является более возможным, чем другие. Например:

выпадение орла или решки при броске монеты; выпадение 1, 2, 3, 4, 5 или 6 очков при броске игрального кубика;

извлечение карты трефовой, пиковой, бубновой или червовой масти из колоды.

При этом предполагается, что монета и кубик однородны и имеют геометрически правильную форму, а колода хорошо перемешана и «идеальна» с точки зрения неразличимости рубашек карт.

Могут ли быть те же события не равновозможными? Могут! Например, если у монеты или кубика смещён центр тяжести, то гораздо чаще будут выпадать вполне определённые грани. Как говорится, ещё одна лазейка для мошенников. События  – извлечение трефы, пики, червы или бубны тоже равновозможны. Однако равновозможность легко нарушит фокусник, который, тасуя колоду (даже «идеальную»), ловко подсмотрит и спрячет в рукаве, например, туза треф. Здесь становится менее возможным, что оппоненту будет сдана трефа, и, главное, менее возможно, что будет сдан туз.

Тем не менее, в рассмотренных трёх случаях при потере равновозможности всё же сохраняется случайность событий.

Совместные и несовместные события. Противоположные события. Полная группа событий

События называют несовместными, если в одном и том же испытании появление одного из событий исключает появление других событий. Простейшим примером несовместных событий  является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой вверху. Например:

 – в результате броска монеты выпадет орёл;  – в результате броска монеты выпадет решка.

Совершено ясно, что в отдельно взятом испытании появление орла исключает появление решки (и наоборот), поэтому данные события и называются несовместными.

Противоположные события легко формулируются из соображений элементарной логики:

 – в результате броска игрального кубика выпадет 5 очков;  – в результате броска игрального кубика выпадет число очков, отличное от пяти.

Либо пять, либо не пять – третьего не дано, т.е. события несовместны и противоположны.

Аналогично – или трефа или карта другой масти:

 – из колоды будет извлечена карта трефовой масти;  – из колоды будет извлечена пика, черва или бубна.

Множество несовместных событий образуют полную группу событий, если в результате отдельно взятого испытания обязательно появится одно из этих событий. Очевидно, что любая пара противоположных событий (в частности, примеры выше) образует полную группу. Однако в различных задачах с одним и тем же объектом могут фигурировать разные события, например, для игрального кубика характерно рассмотрение следующего набора:

 – в результате броска игрального кубика выпадет 1 очко;  – … 2 очка;  – … 3 очка;  – … 4 очка;  – … 5 очков;  – … 6 очков.

События  несовместны (поскольку появление какой-либо грани исключает одновременное появление других) и образуют полную группу (так как в результате испытания непременно появится одно из этих шести событий).

Ещё одно важное понятие, которое нам скоро потребуется – это элементарность исхода (события). Если совсем просто, то элементарное событие «нельзя разложить на другие события». Например, события  элементарны, но событие  не является таковым, так как подразумевает выпадение 1, 2, 3, 4 или 6 очков (включает в себя 5 элементарных исходов).

В примере с картами события  (извлечение трефы, пики, червы или бубны соответственно) несовместны и образуют полную группу, но они неэлементарны. Если считать, что в колоде 36 карт, то каждое из перечисленных событий включает в себя 9 элементарных исходов. Аналогично – события  (извлечение шестёрки, семёрки, …, короля, туза) несовместны, образуют полную группу и неэлементарны (каждое включает в себя 4 исхода).

Таким образом, элементарным исходом здесь считается лишь извлечение какой-то конкретной карты, и, разумеется, 36 несовместных элементарных исходов тоже образуют полную группу событий.

Совместные события менее значимы с точки зрения решения практических задач, но обходить их стороной не будем. События называются совместными, если в отдельно взятом испытании появление одного из них не исключает появление другого. Например:

 – из колоды карт будет извлечена трефа;  – из колоды карт будет извлечена семёрка.

Если быть совсем лаконичным, одно не исключает другого.

Понятие совместности охватывает и бОльшее количество событий:

 – завтра в 12.00 будет дождь;  – завтра в 12.00 будет гроза;  – завтра в 12.00 будет солнце.

Ситуация, конечно, довольно редкая, но совместное появление всех трёх событий в принципе не исключено. Следует отметить, что перечисленные события совместны и попарно, т.е. может быть только ливень с грозой или грибной дождик, или погромыхает неподалёку на фоне ясного неба.

Алгебра событий

Мужайтесь, будет и матан =)

Пожалуйста, запомните ВАЖНЕЙШЕЕ ПРАВИЛО, без которого освоить тервер просто нереально:

Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий – логическую связку И.

1) Суммой двух событий  и  называется событие  которое состоит в том, что наступит или событие  или событие  или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие  или событие .

Правило распространяется и на бОльшее количество слагаемых, например, событие  состоит в том, что произойдёт хотя бы одно из событий , а если события несовместны – то одно и только одно событие из этой суммы: или событие , или событие , или событие , или событие , или событие .

Примеров масса:

События  (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие  (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

Событие  (будет чётное число очков) состоит в том, что выпадет или 2 или 4 или 6 очков.

Событие  заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие  – в том, что будет извлечена «картинка» (валет или дама или король или туз).

Чуть занятнее дело с совместными событиями:

Событие  состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

Событие  состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий, а именно:

– или будет только дождь / только гроза / только солнце; – или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);

– или все три события появятся одновременно.

То есть, событие  включает в себя 7 возможных исходов.

Второй столп алгебры событий:

2) Произведением двух событий  и  называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение  означает, что при некоторых обстоятельствах наступит и событие , и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение  подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , …, и событие .

Рассмотрим испытание, в котором подбрасываются две монеты и следующие события:

 – на 1-й монете выпадет орёл;  – на 1-й монете выпадет решка;  – на 2-й монете выпадет орёл;  – на 2-й монете выпадет решка.

Тогда: – событие  состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орёл; – событие  состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка; – событие  состоит в том, что на 1-й монете выпадет орёл и на 2-й монете решка; – событие  состоит в том, что на 1-й монете выпадет решка и на 2-й монете орёл.

Нетрудно заметить, что события  несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет). Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И, а сложение – ИЛИ. Таким образом, сумму  легко прочитать понятным человеческим языком: «выпадут два орла или две решки или на 1-й монете выпадет орёл и на 2-й решка или на 1-й монете выпадет решка и на 2-й монете орёл »

Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае – две монеты. Другая распространенная в практических задачах схема – это повторные испытания, когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:

 – в 1-м броске выпадет 4 очка;

 – во 2-м броске выпадет 5 очков;  – в 3-м броске выпадет 6 очков.

Тогда событие  состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков. Очевидно, что в случае с кубиком будет значительно больше комбинаций (исходов), чем, если бы мы подбрасывали монету.

…Понимаю, что, возможно, разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько анонимов, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)

Вероятность события

Вероятность события – это центральное понятие теории вероятностей. …Убийственно логичная вещь, но с чего-то надо было начинать =)  Существует несколько подходов к её определению:

Классическое определение вероятности; Геометрическое определение вероятности; Статистическое определение вероятности.

В данной статье я остановлюсь на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях.

Обозначения. Вероятность некоторого события  обозначается большой латинской буквой , а само событие берётся в скобки, выступая в роли своеобразного аргумента. Например:

 –  вероятность того, что в результате броска монеты выпадет «орёл»;  – вероятность того, что в результате броска игральной кости выпадет 5 очков;  – вероятность того, что из колоды будет извлечена карта трефовой масти.

Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий  и их вероятностей  в пользу следующей стилистики::

 – вероятность того, что в результате броска монеты выпадет «орёл»;  – вероятность того, что в результате броска игральной кости выпадет 5 очков;  – вероятность того, что из колоды будет извлечена карта трефовой масти.

Данный вариант популярен при решении практических задач, поскольку позволяет заметно сократить запись решения. Как и в первом случае, здесь удобно использовать «говорящие» подстрочные/надстрочные индексы.

Все уже давно догадались о числах, которые я только что записал выше, и сейчас мы узнаем, как они получились:

Классическое определение вероятности:

Вероятностью наступления события  в некотором испытании называют отношение , где:

 – общее число всех равновозможных, элементарных исходов этого испытания, которые образуют полную группу событий;

 – количество элементарных исходов, благоприятствующих событию .

При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу, таким образом, общее число исходов ; при этом, каждый из них элементарен и равновозможен.  Событию  благоприятствует  исход (выпадение орла). По классическому определению вероятностей: .

Аналогично – в результате броска кубика может появиться  элементарных равновозможных исходов, образующих полную группу, а событию  благоприятствует единственный  исход (выпадение пятёрки). Поэтому: .

Особое внимание обращаю на третий пример. Здесь будет некорректным сказать «раз в колоде 4 масти, то вероятность извлечения трефы ». В определении речь идёт об элементарных исходах, поэтому правильный порядок рассуждений таков: всего в колоде 36 карт (несовместные элементарные исходы, образующие полную группу), из них 9 карт трефовой масти (кол-во элементарных исходов, благоприятствующих событию ); по классическому определению вероятности: . Именно так!

Вероятности можно выразить и в процентах, например: вероятность выпадение орла равна , выпадения пятёрки , извлечения трефы , но в теории вероятностей ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО (хотя не возбраняется прикидывать проценты в уме).

Принято использовать доли единицы, и, очевидно, что вероятность может изменяться в пределах . При этом если , то событие  является невозможным, если  – достоверным, а если , то речь идёт о случайном событии.

! Если в ходе решения любой задачи у вас получилось какое-то другое значение вероятности – ищите ошибку!

При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:

 – из урны будет извлечён красный шар;  – из урны будет извлечён зелёный шар.

Общее количество исходов: . Событию  благоприятствуют все возможные исходы , следовательно, , то есть данное событие достоверно. Для 2-го же события благоприятствующие исходы отсутствуют , поэтому , то есть событие  невозможно.

Особый интерес представляют события, вероятность наступления которых чрезвычайно мала. Хоть такие события и являются случайными, для них справедлив следующий постулат:

в единичном испытании маловозможное событие не произойдёт.

Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна  0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут. ...Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)

Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта. 

Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.

Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:

Сумма вероятностей событий, которые образуют полную группу, равна единице. Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

 – в результате броска монеты выпадет орёл;  – в результате броска монеты выпадет решка.

По теореме:  

Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .

По причине равенства вероятностей равновозможные события часто называют равновероятными. А вот и скороговорка на определение степени опьянения получилась =)

Пример с кубиком: события  противоположны, поэтому .

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность  того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:

Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:

События , как отмечалось выше, равновозможны – и теперь мы можем сказать, что равновероятны. Вероятность выпадения любой грани кубика равна :

Ну и на закуску колода: поскольку нам известна вероятность  того, что будет извлечена трефа, то легко найти вероятность того, что будет извлечена карта другой масти:

Заметьте, что рассмотренные пары событий  и  не равновероятны, как оно чаще всего и бывает.

В упрощенной версии записи решения вероятность противоположного события стандартно обозначается строчной буквой . Например, если  – вероятность того, что стрелок попадёт в цель, то  – вероятность того, что он промахнётся.

! В теории вероятностей буквы  и  нежелательно использовать в каких-то других целях.

В честь Дня Знаний я не буду задавать домашнее задание =), но очень важно, чтобы вы могли ответить на следующие вопросы:

– Какие виды событий существуют? – Что такое случайность и равновозможность события? – Как вы понимаете термины совместность/несовместность событий? – Что такое полная группа событий, противоположные события? – Что означает сложение и умножение событий? – В чём суть классического определения вероятности? – Чем полезна теорема сложения вероятностей событий, образующих полную группу?

Нет, зубрить ничего не надо, это всего лишь азы теории вероятностей – своеобразный букварь, который довольно быстро уложится в голове. И чтобы это произошло как можно скорее, предлагаю ознакомиться с уроками Задачи по комбинаторике и Задачи на классическое определение вероятности.

Успехов!

Автор: Емелин Александр

 

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Профессиональная помощь по любому предмету – Zaochnik.com

www.mathprofi.ru

Основные понятия теории вероятностей, определение и свойства вероятностей. Непосредственное вычисление вероятностей

Возникновение теории вероятностей относится к середине XVII века, когда математики заинтересовались задачами, поставленными азартными игроками и до сих пор не изучавшимися в математике. В процессе решения этих задач выкристаллизовались такие понятия, как вероятность и математическое ожидание. При этом ученые того времени – Гюйгенс (1629-1695), Паскаль (1623-1662), Ферма (1601-1665) и Бернулли (1654-1705) были убеждены, что на базе массовых случайных событий могут возникать четкие закономерности. И только состояние естествознания привело к тому, что азартные игры еще долго продолжали оставаться тем почти единственным конкретным материалом, на базе которого создавались понятия и методы теории вероятностей. Это обстоятельство накладывало отпечаток и на формально-математический аппарат, посредством которого решались возникавшие в теории вероятностей задачи: он сводился исключительно к элементарно-арифметическим и комбинаторным методам.

Серьезные требования со стороны естествознания и общественной практики (теория ошибок наблюдения, задачи теории стрельбы, проблемы статистики, в первую очередь статистики народонаселения) привели к необходимости дальнейшего развития теории вероятностей и привлечения более развитого аналитического аппарата. Особенно значительную роль в развитии аналитических методов теории вероятностей сыграли Муавр (1667-1754), Лаплас (1749-1827), Гаусс (1777-1855), Пуассон (1781-1840). С формально-аналитической стороны к этому же направлению примыкает работа создателя неевклидовой геометрии Лобачевского (1792-1856), посвященная теории ошибок при измерениях на сфере и выполненная целью установления геометрической системы, господствующей во вселенной.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики: в абстрактной форме она отражает закономерности, присущие случайным событиям массового характера. Эти закономерности играют исключительно важную роль в физике и других областях естествознания, разнообразнейших технических дисциплинах, экономике, социологии, биологии. В связи с широким развитием предприятий, производящих массовую продукцию, результаты теории вероятностей стали использоваться не только для браковки уже изготовленной продукции, но и для организации самого процесса производства (статистический контроль в производстве).

Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины. Событием является любой факт, который можно констатировать в результате наблюдения или опыта. Наблюдением или опытом называют реализацию определенных условий, в которых событие может состояться.

Опыт означает, что упомянутый комплекс обстоятельств создан сознательно. В ходе наблюдения сам наблюдающий комплекс этих условий не создает и не влияет на него. Его создают или силы природы или другие люди.

Что нужно знать, чтобы определять вероятности событий

Все события, за которыми люди наблюдают или сами создают их, делятся на:

  • достоверные события;
  • невозможные события;
  • случайные события.

Достоверные события наступают всегда, когда создан определенный комплекс обстоятельств. Например, если работаем, то получаем за это вознаграждение, если сдали экзамены и выдержали конкурс, то достоверно можем рассчитывать на то, что включены в число студентов. Достоверные события можно наблюдать в физике и химии. В экономике достоверные события связаны с существующим общественным устройством и законодательством. Например, если мы вложили деньги в банк на депозит и выразили желание в определенный срок их получить, то деньги получим. На это можно рассчитывать как на достоверное событие.

Невозможные события определенно не наступают, если создался определенный комплекс условий. Например, вода не замерзает, если температура составляет плюс 15 градусов по Цельсию, производство не ведется без электроэнергии.

Случайные события при реализации определенного комплекса условий могут наступить и могут не наступить. Например, если мы один раз подбрасываем монету, герб может выпасть, а может не выпасть, по лотерейному билету можно выиграть, а можно не выиграть, произведенное изделие может быть годным, а может быть бракованным. Появление бракованного изделия является случайным событием, более редким, чем производство годных изделий.

Ожидаемая частота наступления случайных событий тесно связана с понятием вероятности. Закономерности наступления и ненаступления случайных событий исследует теория вероятностей.

Если комплекс нужных условий реализован лишь один раз, то получаем недостаточно информации о случайном событии, поскольку оно может наступить, а может не наступить. Если комплекс условий реализован много раз, то появляются известные закономерности. Например, никогда невозможно узнать, какой кофейный аппарат в магазине потребует очередной покупатель, но если известны марки наиболее востребованных в течение длительного времени кофейных аппаратов, то на основе этих данных возможно организовать производство или поставки, чтобы удовлетворить спрос.

Знание закономерностей, которым подчинены массовые случайные события, позволяет прогнозировать, когда эти события наступят. Например, как уже ранее отмечено, заранее нельзя предусмотреть результат бросания монеты, но если монета брошена много раз, то можно предусмотреть выпадение герба. Ошибка может быть небольшой.

Методы теории вероятностей широко используются в различных отраслях естествознания, теоретической физике, геодезии, астрономии, теории автоматизированного управления, теории наблюдения ошибок, и во многих других теоретических и практических науках. Теория вероятностей широко используется в планировании и организации производства, анализе качества продукции, анализе технологических процессов, страховании, статистике населения, биологии, баллистике и других отраслях.

Случайные события обычно обозначают большими буквами латинского алфавита A, B, C и т.д.

Случайные события могут быть:

  • несовместными;
  • совместными.

События A, B, C … называют несовместными, если в результате одного испытания может наступить одно из этих событий, но невозможно наступление двух или более событий.

Если наступление одного случайного события не исключает наступление другого события, то такие события называют совместными. Например, если с ленты конвейера снимают очередную деталь и событие А означает «деталь соответствует стандарту», а событие B означает «деталь не соответствует стандарту», то A и B – несовместные события. Если событие C означает «взята деталь II сорта», то это событие совместно с событием A, но несовместно с событием B.

Если в каждом наблюдении (испытании) должно произойти одно и только одно из несовместных случайных событий, то эти события составляют полное множество (систему) событий.

Достоверным событием является наступление хотя бы одного события из полного множества событий.

Если события, образующие полное множество событий, попарно несовместны, то в результате наблюдения может наступить только одно из этих событий. Например, студент должен решить две задачи контрольной работы. Определенно произойдет одно и только одно из следующих событий:

  • будет решена первая задача и не будет решена вторая задача;
  • будет решена вторая задача и не будет решена первая задача;
  • будут решены обе задачи;
  • не будет решена ни одна из задач.

Эти события образуют полное множество несовместных событий.

Если полное множество событий состоит только из двух несовместных событий, то их называют взаимно противоположными или альтернативными событиями.

Событие, противоположное событию , обозначают . Например, в случае одного подбрасывания монеты может выпасть номинал () или герб ().

События называют равновозможными, если ни у одного из них нет объективных преимуществ. Такие события также составляют полное множество событий. Это значит, что в результате наблюдения или испытания определенно должно наступить по меньшей мере одно из равновозможных событий.

Например, полную группу событий образуют выпадение номинала и герба при одном подбрасывании монеты, наличие на одной печатной странице текста 0, 1, 2, 3 и более 3 ошибок.

Определения и свойства вероятностей

Классическое определение вероятности. Возможностью или благоприятным случаем называют случай, когда при реализации определённого комплекса обстоятельств события А  происходят. Классическое определение вероятности предполагает напрямую вычислить число благоприятных случаев или возможностей.

Классическая и статистическая вероятности. Формулы вероятностей: классической и статистической

Вероятностью события А называют отношение числа благоприятных этому событию возможностей к числу всех равновозможных несовместных событий N, которые могут произойти в результате одного испытания или наблюдения. Формула вероятности события А:

                             (1)

Если совершенно понятно, о вероятности какого события идёт речь, то тогда вероятность обозначают маленькой буквой p, не указывая обозначения события.

Чтобы вычислить вероятность по классическому определению, необходимо найти число всех равновозможных несовместных событий и определить, сколько из них благоприятны определению события А.

Пример 1. Найти вероятность выпадения числа 5 в результате бросания игральной кости.

Решение. Известно, что у всех шести граней одинаковая возможность оказаться наверху. Число 5 отмечено только на одной грани. Число всех равновозможных несовместных событий насчитывается 6, из них только одна благоприятная возможность выпадения числа 5 (М = 1). Это означает, что искомая вероятность выпадения числа 5

Пример 2. В ящике находятся 3 красных и 12 белых одинаковых по размеру мячиков. Не глядя взят один мячик. Найти вероятность, что взят красный мячик.

Решение. Искомая вероятность

Найти вероятности самостоятельно, а затем посмотреть решение

Пример 5. В урне 5 белых и 7 чёрных шаров. Случайно вытаскивается 1 шар. Событие A - вытянут белый шар. Событие B - вытянут чёрный шар. Вычислить вероятности этих событий.

Посмотреть правильное решение и ответ.

Классическую вероятность называют также априорной вероятностью, так как её рассчитывают перед началом испытания или наблюдения. Из априорного характера классической вероятности вытекает её главный недостаток: только в редких случаях уже перед началом наблюдения можно вычислить все равновозможные несовместные события и в том числе благоприятные события. Такие возможности обычно возникают в ситуациях, родственных играм.

Сочетания. Если последовательность событий не важна, число возможных событий вычисляют как число сочетаний:

                    (2)

Пример 6. В группе 30 студентов. Трём студентам следует направиться на кафедру информатики, чтобы взять и принести компьютер и проектор. Вычислить вероятность того, что это сделают три определённых студента.

Решение. Число возможных событий рассчитываем, используя формулу (2):

Вероятность того, что на кафедру отправятся три определённых студента:

Пример 7. Продаются 10 мобильных телефонов. Их них у 3 есть дефекты. Покупатель выбрал 2 телефона. Вычислить вероятность того, что оба выбранных телефона будут с дефектами.

Решение. Число всех равновозможных событий находим по формуле (2):

По той же формуле находим число благоприятных событию возможностей:

Искомая вероятность того, что оба выбранных телефона будут с дефектами:

Найти вероятность самостоятельно, а затем посмотреть решение

Пример 8. В экзаменационных билетах 40 вопросов, которые не повторяются. Студент подготовил ответы на 30 из них. В каждом билете 2 вопроса. Какова вероятность того, что студент знает ответы на оба вопроса в билете?

Посмотреть правильное решение и ответ.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Теория вероятностей и математическая статистика

Свойства вероятностей

Свойство 1. Если можно вычислить возможности возникновения события А и их число совпадает общим числом равновозможных событий, то вероятность события А равна 1.

Например, при бросании игральной кости число возможностей выпадения чисел 1, 2, 3, 4, 5, 6 равно 6. Насчитывается также 6 равновозможных несовместимых событий. Таким образом, M = N  и

Свойство 2. Вероятность невозможного события равна 0. Если число возможностей события А равна 0, то и

Например, при бросании игральной кости не может выпасть число 9, потому что такого числа нет на гранях игральной кости.

Свойство 3. Вероятность случайного события всегда больше 0 и меньше 1:

или

Определение статистической вероятности. В определении статистической вероятности используется понятие относительно частоты события А. Относительной частотой события А называют отношение числа наблюдений, в которых наблюдается А, к числу всех наблюдений. Относительную частоту обычно обозначают буквой W. Если в n наблюдениях событие А наблюдается m раз, то относительная частота события А:

Например, баскетболист у штрафной линии готовится совершить бросок. Из собранной тренером статистической информации известно, что у этого баскетболиста из 100 штрафных бросков успешны 70. Вероятность того, что баскетболист реализует штрафной бросок:

Длительные наблюдения показали, что с увеличением числа наблюдений относительная частота события А становится всё более стабильной. Число, около которого при серии наблюдений колеблется относительная частота, называется статистической вероятностью события А. Формула статистической вероятности события А:

если .

Вычислить точную статистическую вероятность невозможно, так как невозможно выбрать бесконечно большое число наблюдений.

Преимущество статистического определения вероятности в том, что оно не требует априорных знаний об исследуемом объекте. Классическую вероятность можно вычислить до наблюдения или испытания, а статистическую – после наблюдения или испытания.

Нет времени вникать в решение? Можно заказать работу! Действия над вероятностями Различные задачи на сложение и умножение вероятностей Формула полной вероятности Независимые испытания и формула Бернулли Пройти тест по теме Теория вероятностей и математическая статистика Распределение вероятностей дискретной случайной величины Распределение вероятностей непрерывной случайной величины Математическое ожидание и дисперсия случайной величины Биномиальное распределение дискретной случайной величины Распределение Пуассона дискретной случайной величины Равномерное распределение непрерывной случайной величины Нормальное распределение непрерывной случайной величины

function-x.ru


Смотрите также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>