Кто рассчитал первую космическую скорость
Первая космическая скорость - это... Что такое Первая космическая скорость?

Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Содержание
|
Вычисление
В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять свое направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью».
Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км), найдем
7,9 км/сПервую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то
.Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,68 км/с, v2 = 2,375 км/с
См. также
Примечания
Ссылки
dic.academic.ru
Космическая скорость
[править]
Материал из Википедии — свободной энциклопедии
Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении с поверхности небесного тела сможет:
v1 (круговая скорость) — стать спутником небесного тела (то есть вращаться по круговой орбите вокруг НТ на нулевой или пренебрежимо малой высоте относительно поверхности);
v2 (параболическая скорость, скорость убегания) — преодолеть гравитационное притяжение небесного тела и уйти на бесконечность;
v3 — покинуть звёздную систему, преодолев притяжение звезды;
v4 — покинуть галактику.
Вторая космическая скорость в раза больше первой.
[Править]Первая и вторая космические скорости для различных объектов
Небесное тело | Масса (по отношению к массе Земли) | v1, км/с | v2, км/с |
Луна | 0,0123 | 1,680 | 2,375 |
Меркурий | 0,055 | 3,05 | 4,3 |
Марс | 0,108 | 3,546 | 5,0 |
Венера | 0,82 | 7,356 | 10,22 |
Земля | 1 | 7,91 | 11,2 |
Уран | 14,5 | 15,6 | 22,0 |
Нептун | 17,5 | 24,0 | |
Сатурн | 95,3 | 36,0 | |
Юпитер | 318,3 | 61,0 | |
Солнце | 333 000 | 437 | 617,7 |
Сириус В | 325 675 | 10 000 | |
Нейтронная звезда | 666 000 | 200 000 | |
Кварковая звезда | 832 500 | 300 000 | |
Чёрная дыра | 832 500 — 5,6·1015 | не имеет |
[править]
Первая космическая скорость
[править]
Материал из Википедии — свободной энциклопедии
Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.
Пе́рвая косми́ческая ско́рость (кругова́я ско́рость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Содержание [убрать]
|
[Править]Вычисление
В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять свое направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью».
Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км), найдем
studfiles.net
Что такое первая и вторая космические скорости?
Мы – земляне – привыкли, что твердо стоим на земле и никуда не улетаем, а если подкинем какой-нибудь предмет в воздух, то он обязательно упадет на поверхность. Всему виной создаваемое нашей планетой гравитационное поле, которое искривляет пространство-время и заставляет брошенное в сторону, например, яблоко лететь по искривленной траектории и пересечься с Землей.
Гравитационное поле создает вокруг себя любой объект, и у Земли, обладающей внушительной массой, это поле довольно сильно. Именно поэтому строятся мощные многоступенчатые космические ракеты, способные разгонять космические корабли до больших скоростей, которые нужны для преодоления гравитации планеты. Значение этих скоростей и получили названия первая и вторая космические скорости.
Понятие первой космической скорости очень простое – это скорость, которую необходимо придать физическому объекту, чтобы он, двигаясь параллельно космическому телу, не смог на него упасть, но в то же время оставался бы на постоянной орбите.
Формула нахождения первой космической скорости не отличается сложностью:где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;
Попробуйте подставить в формулу необходимые значения (G – гравитационная постоянная всегда равна 6,67; масса Земли равна 5,97·1024 кг, а её радиус 6371 км) и найти первую космическую скорость нашей планеты.
В результате мы получим скорость, равную 7,9 км/с. Но почему, двигаясь именно с такой скоростью, космический аппарат не будет падать на Землю или улетать в космическое пространство? Улетать в космос он не будет из-за того, что данная скорость пока еще слишком мала, чтобы преодолеть гравитационное поле, а вот на Землю он как раз и будет падать. Но только из-за высокой скорости он все время будет «уходить» от столкновения с Землей, продолжая в то же время свое «падение» по круговой орбите, вызванной искривлением пространства.

Это интересно: по такому же принципу «работает» и Международная Космическая Станция. Находящиеся на ней космонавты все время проводят в постоянном и непрекращающемся падении, которое не заканчивается трагически вследствие высокой скорости самой станции, из-за чего та стабильно «промахивается» мимо Земли. Значение скорости рассчитывается исходя из высоты орбиты, на которой летает станция.
Но что делать, если мы захотим, чтобы космический аппарат покинул пределы нашей планеты и не был зависим от ее гравитационного поля? Разогнать его до второй космической скорости! Итак, вторая космическая скорость – это минимальная скорость, которую необходимо придать физическому объекту, чтобы он преодолел гравитационное притяжение небесного тела и покинул его замкнутую орбиту.
Значение второй космической скорости тоже, зависит от массы и радиуса небесного тела, поэтому для каждого объекта она будет своей. Например, чтобы преодолеть гравитационное притяжение Земли, космическому аппарату необходимо набрать минимальную скорость 11.2 км/с, Юпитера — 61 км/с, Солнца — 617,7 км/с.

Вторую космическую скорость(V2) можно рассчитать, используя следующую формулу:
где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;
Но если известна первая космическая скорость исследуемого объекта (V1), то задача облегчается в разы, и вторая космическая скорость (V2) быстро находится по формуле:
Это интересно: вторая космическая формула черной дыры больше 299 792 км/c, то есть больше скорости света. Именно поэтому ничто, даже свет не может вырваться за ее пределы.
Помимо первой и второй комических скоростей существуют третья и четвертая, достичь которых нужно для того, чтобы выйти за пределы нашей Солнечной системы и галактики соответственно.
Иллюстрация: bigstockphoto | 3DSculptor
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
comments powered by HyperCommentsmydiscoveries.ru
Как рассчитать первую космическую скорость
Для стабильной работы Международная космическая станция должна работать на постоянной орбите и двигаться с определенной скоростью. Последняя взята не с потолка, а рассчитывается по определенным формулам, которыми описываются законы Ньютона.

Инструкция
Все расчеты завязаны на втором законе Ньютона, который, как всем со школы известно, записывается так: сила, действующая на тело равна массе этого тела, помноженная на ускорения с которым это тело движется. Таким образом, если сумма всех сил, действующих на тело равна нулю, то оно либо находится в поко, либо движется с определенной скоростью.
Именно это свойство и используется при расчете первой космической скорости. Чтобы тело находилось на определенном расстоянии от Земли неограниченной кол-во времени, нужно, чтобы сила тяжести и сила центробежной инерции были равны между собой и противоположны по знаку. Данные условия описывает следующая формула:M*V^2/R = M*g. В данном уравнении:М - масса тела, движущегося по орбите.V - первая космическая скорость.R - радиус Земли плюс высота орбиты.g - ускорение свободного падения (для Земли 9,8 м/с^2).


Видео по теме
Обратите внимание
При расчетах не учитывается сопротивления атмосферы, так оно на высоте выше 200 километров пренебрежимо мало.
Распечатать
Как рассчитать первую космическую скорость
www.kakprosto.ru