Кто придумал логарифмы


Для чего нужны логарифмы

Что такое логарифм? Точное определение звучит так: «логарифмом числа А по основанию C называют показатель степени, в которую нужно возвести число C, чтобы получить число А». В общепринятой записи это выглядит так: log c А. Например, логарифм 8 по основанию 2 равен 3, а логарифм 256 по тому же основанию равен 8.

Если основанием логарифма (то есть, тем числом, которое нужно возвести в степень) является 10, то логарифм называется «десятичным», и обозначается следующим образом: lg. Если же в роли основания выступает трансцендентное число e (примерно равное 2,718), то логарифм называется «натуральным», и обозначается ln. Для чего вообще нужны логарифмы? Какая от них практическая польза? Пожалуй, лучше всего ответил на эти вопросы знаменитый математик, физик и астроном Пьер-Симон Лаплас (1749-1827). По его мнению, изобретение такого показателя, как логарифм, словно удваивает жизнь астрономов, сокращая вычисления нескольких месяцев в труд нескольких дней. Некоторые на это могут ответить: мол, любителей тайн звездного неба сравнительно немного, а остальным-то людям что дают логарифмы? Говоря про астрономов, Лаплас имел в виду, прежде всего, тех, кто занимается сложными вычислениями. А изобретение логарифмов очень облегчило эту работу.В средние века математика в Европе, как и многие другие науки, практически не развивалась. Это происходило, прежде всего, из-за господства церкви, ревностно следившей, чтобы научное слово не расходилось со Священным Писанием. Но постепенно, с ростом числа университетов, а также с изобретением печатного станка математика стала возрождаться. Сильнейший толчок в развитии дисциплины дала эпоха Великих Географических Открытий. Морякам, отплывавшим на поиски новых земель, нужны были и точные карты, и астрономические таблицы для определения местоположения корабля. А для их составления требовались объединенные усилия астрономов-наблюдателей и математиков-вычислителей. Особая заслуга в этом объединении принадлежит гениальному ученому, Иоганну Кеплеру (1571 – 1630), который сделал фундаментальные открытия, работая над теорией движения небесных тел. Он же составил очень точные (по тем временам) астрономические таблицы. Но вычисления, необходимые для их составления, по-прежнему оставались очень сложными, они требовали колоссальных усилий и больших затрат времени. И так продолжалось до тех пор, пока не были изобретены логарифмы. Именно с их помощью стало возможным во много раз упростить и ускорить вычисления. Используя таблицы логарифмов, составленные знаменитым шотландским математиком Джоном Непером, можно без особых усилий перемножать числа, извлекать корни. Логарифм позволяет упростить умножение многозначных чисел путем сложения их логарифмов. Например, возьмем два числа, которые нужно умножить посредством логарифмов: 45,2 и 378. С помощью таблицы увидим, что по основанию 10 эти числа равны 1,6551 и 2,5775, то есть, 45,2 =10^1,6551 и 378=10^2,5775. Таким образом, 45,2*378=10^(1,6551+2,5775)=10^4,2326. Получили, что логарифм произведения чисел 45,2 и 378 равен 4,2326. Из таблицы логарифмов легко найти результат самого произведения.

Источники:

Многозначность слов – важное языковое явление. Оно свойственно всем развитым языкам. Многозначные слова позволяют сократить количественный состав словарей. При этом, они служат особой выразительности речи.

Любой язык стремится выразить все многообразие окружающего мира, назвать явления и предметы, описать их признаки, обозначить действия.

При произнесении слова, в сознании возникает представление о названном предмете или явлении. Но одним и тем же словом могут обозначаться разные предметы, действия и признаки.

Например, при произнесении слова «ручка» в сознании возникает сразу несколько понятий: ручка двери, шариковая ручка, ручка ребенка. Это многозначное слово, которое соотносится не с одним, а с несколькими явлениями действительности.

У многозначных слов одно значение является прямым, а остальные переносными. Прямое значение не мотивируется другими лексическими значениями слова и напрямую связано с явлениями окружающего мира. Переносное значение всегда мотивируется основным значением и связано с ним по смыслу. Обычно носители языка с легкостью улавливают общее между прямым и переносным значениями и без затруднений опознают переносные значения слова. Например: стальные нервы (крепкие, как сталь), поток людей (непрерывно) – люди движутся так, как течет река.

Перенос наименований происходит на основе сходства предметов и называется метафорой, которая является ярким выразительным и образным средством: бурлящие чувства, развеять мечты, крылья мельницы.

Другой тип многозначности представляет собой метонимия или перенос наименований по смежности. Например: скупка золота (золотых изделий), класс пошел в поход (ученики класса).

Существует еще одна разновидность многозначности, построенная на принципе переноса с части на целое или наоборот – это синекдоха: Красная Шапочка, Синяя Борода. Синекдоха является особым видом метонимии. В ней также подразумевается смежность явлений, названных одним словом. Многозначность слов широко используется писателями и публицистами как особый стилистический прием, который делает речь выразительнее, усиливает образность речи и делает описываемые явления и события более колоритными и наглядными.

Часто прием скрытого или явного сопоставления прямого и переносного значений слов используется в названиях литературных произведений, что делает их более емкими и яркими: «Гроза» А.Н. Островского, «Обрыв» И.А. Гончарова.

Многозначные слова нередко служат источником языковой игры, создания новых шуток и забавных рифм и каламбуров. Например: вечером у меня вечер.

Видео по теме

Источники:

  • Лексические ошибки, связанные с употреблением многозначных слов.

Распечатать

Для чего нужны логарифмы

www.kakprosto.ru

Логарифмы - это... Что такое Логарифмы?

Рис. 1. Графики логарифмических функций

Логарифм числа b по основанию a определяется как показатель степени, в которую надо возвести число a, чтобы получить число b. Обозначение: . Из определения следует, что записи и ax = b равносильны.

Пример: , потому что 23 = 8.

Вещественный логарифм

Логарифм вещественного числа logab имеет смысл при .

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию, например: . Эта функция определена в правой части числовой прямой: x > 0, непрерывна и дифференцируема там (см. рис. 1).

Свойства

  • Основное логарифмическое тождество:
  • (замена основания логарифма)

Натуральные логарифмы

Для производной натурального логарифма справедлива простая формула:

По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.

При справедливо равенство

(1)

В частности,

Формула (1) не имеет большой практической ценности из-за того, что ряд очень медленно сходится и значение x ограничено весьма узким диапазоном. Однако нетрудно получить из неё более удобную формулу:

(2)

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки. Подобная шкала широко используется в различных областях науки, например:

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Комплексный логарифм

Многозначная функция

Для комплексных чисел логарифм определяется так же, как вещественный. Начнём с натурального логарифма, который обозначим и определим как множество всех комплексных чисел z таких, что ez = w. Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

,

то логарифм находится по формуле:

Здесь  — вещественный логарифм, r = | w | , k — произвольное целое число. Значение, получаемое при k = 0, называется главным значением комплексного натурального логарифма; принято брать в нём значение аргумента в интервале ( − π,π]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви.

Из формулы следует:

  • Вещественная часть логарифма определяется по формуле:
  • Логарифм отрицательного числа находится по формуле:

Примеры (приведено главное значение логарифма):

  • ln( − 1) = iπ

Аналогично рассматриваются комплексные логарифмы с другим основанием. Следует, однако, быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

iπ = ln( − 1) = ln(( − i)2) = 2ln( − i) = 2( − iπ / 2) = − iπ — явная нелепость.

Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви (k = − 1). Причина ошибки — неосторожное использования свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

Аналитическое продолжение

Рис. 3. Комплексный логарифм (мнимая часть)

Логарифм комплексного числа также может быть определён как аналитическое продолжение вещественного логарифма на всю комплексную плоскость. В явном виде продолжение логарифма вдоль кривой Γ, не проходящей через 0, можно осуществить по формуле (соответствующую функцию также обозначаем ln)

При этом, если Γ — простая кривая (без самопересечений), то для чисел, лежащих на ней, логарифмические тождества можно применять без опасений, например

Из формулы аналитического продолжения следует, что на любой ветви логарифма

Для любой окружности S, охватывающей точку 0:

Интеграл берётся в положительном направлении (против часовой стрелки). Это тождество лежит в основе теории вычетов.

Риманова поверхность

Комплексная логарифмическая функция — пример римановой поверхности; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна; её единственный нуль (первого порядка) получается при z = 1, особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0.

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra» Михаэль Штифель, который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов». В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'. Термин логарифм, предложенный Непером, утвердился в науке.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введенный для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) — LogNap(1).

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. В книге «Введение в анализ бесконечных» (1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x). Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование, то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n. Например, lg8314,63 = lg8,31463 + 3. Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже — с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого. В СССР выпускались несколько сборников таблиц логарифмов.

  • Брадис В. М. Четырехзначные математические таблицы. 44-е издание, М., 1973.

Таблицы Брадиса (1921) использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

  • Вега Г. Таблицы семизначных логарифмов, 4-е издание, М., 1971.

Профессиональный сборник для точных вычислений.

  • Пятизначные таблицы натуральных значений тригонометрических величин, их логарифмов и логарифмов чисел, 6 изд., М.: Наука, 1972.
  • Таблицы натуральных логарифмов, 2-е издание, в 2 томах, М.: Наука, 1971.

См. также

Литература

Wikimedia Foundation. 2010.

dic.academic.ru

ЛОГАРИФМ - это... Что такое ЛОГАРИФМ?

  • ЛОГАРИФМ — (греч., от logos отношение, и arithmos число). Число арифметической прогрессии, соответствующее числу геометрической прогрессии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛОГАРИФМ греч., от logos, отношение,… …   Словарь иностранных слов русского языка

  • ЛОГАРИФМ — данного числа N при основании а показатель степени у, в которую нужно возвести число а, чтобы получить N; таким образом, N = ay. Логарифмом обозначается обычно logaN. Логарифм с основанием е ? 2,718... называется натуральным и обозначается lnN.… …   Большой Энциклопедический словарь

  • ЛОГАРИФМ — (от греческого logos отношение и arithmos число) числа N по основанию a (O …   Современная энциклопедия

  • ЛОГАРИФМ — ЛОГАРИФМ, вспомогательный прием (формула) для произведения вычислений, выведенный в 1614 г. Джоном НЕПЕРОМ и разработанный впоследствии английским математиком Генри Бриггсом (1561 1631). Логарифмом числа ( ) является показатель степени (х), в… …   Научно-технический энциклопедический словарь

  • Логарифм — (от греческого logos отношение и arithmos число) числа N по основанию a (O …   Иллюстрированный энциклопедический словарь

  • ЛОГАРИФМ — (logarithm) Степень, в которую надо возвести какое либо служащее основанием число, большее 1, чтобы получить какое либо определенное положительное число. Если х является логарифмом с основанием у от z, то z=уx. Логарифмы имеют такое свойство, что …   Экономический словарь

  • логарифм — а, м. ЛОГАРИТМ а, м. logarithme m. , нем. Logarithm, н. лат. Logarithmus

    dic.academic.ru

    Логарифмы. Джон Непер

    На всем протяжении XVI века быстро возрастало количество приближенных вычислений, прежде всего в астрономии. Исследование планетных движений требовало колоссальных расчетов. Астрономы просто могли утонуть в невыполнимых расчетах. Очевидные трудности возникали и в других областях, таких как финансовое и страховое дело. Основную трудность представляли умножение и деление многозначных чисел, особенно же тригонометрических величин.

    Иногда для приведения умножения к более легкому сложению и вычитанию пользовались таблицами синусов и косинусов. Была также составлена таблица квадратов до 100 000, с помощью которой умножение можно было производить по определенному правилу.

    Однако эти приемы не давали удовлетворительного решения вопроса. Его принесли с собой таблицы логарифмов.

    «Открытие логарифмов опиралось на хорошо известные к концу XVI века свойства прогрессий, — пишут М.В. Чириков и А.П. Юшкевич. — Связь между членами геометрической профессии и арифметической прогрессией не раз отмечалась математиками, о ней говорилось еще в «Псаммите» Архимеда. Другой предпосылкой было распространение понятия степени на отрицательные и дробные показатели, позволившее перенести только что упомянутую связь на более общий случай...

    Многие... авторы указывали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической — в том же порядке — сложение, вычитание, умножение и деление. Здесь уже скрывалась идея логарифма числа как показателя степени, в которую нужно возвести данное основание, чтобы получить это число. Оставалось перенести знакомые свойства прогрессии с общим членом на любые действительные показатели. Это дало бы непрерывную показательную функцию, принимающую любые положительные значения, а также обратную ей логарифмическую. Но эту идею глубокого принципиального значения удалось развить через несколько десятков лет».

    Логарифмы изобрели независимо друг от друга Непером и Бюрги лет на десять позднее. Их цель была одна — желание дать новое удобное средство арифметических вычислений. Подход же оказался разный. Непер кинематически выразил логарифмическую функцию, что позволило ему по существу вступить в почти неизведанную область теории функций. Бюрги остался на почве рассмотрения дискретных прогрессий. Надо заметить, что у обоих определение логарифма не походило на современное.

    Первый изобретатель логарифмов — шотландский барон Джон Непер (1550—1617) получил образование на родине в Эдинбурге. Затем после путешествия по Германии, Франции и Испании, в возрасте двадцати одного года, он навсегда поселился в семейном поместье близ Эдинбурга. Непер занялся главным образом богословием и математикой, которую изучал по сочинениям Евклида, Архимеда, Региомонтана, Коперника.

    «К открытию логарифмов, — отмечают Чириков и Юшкевич, — Непер пришел не позднее 1594 года, но лишь двадцать лет спустя опубликовал свое «Описание удивительной таблицы логарифмов» (1614), содержавшее определение Неперовых логарифмов, их свойства и таблицы логарифмов синусов и косинусов от 0 до 90 градусов с интервалом в 1 минуту, а также разности этих логарифмов, дающие логарифмы тангенсов. Теоретические выводы и объяснения способа вычисления таблицы он изложил в другом труде, подготовленном, вероятно, до «Описания», но изданном посмертно, в «Построении удивительной таблицы логарифмов» (1619). Упомянем, что в обоих сочинениях Непер рассматривает и некоторые вопросы тригонометрии. Особенно известны удобные для логарифмирования «аналогии», т. е. пропорции Непера, применяемые при решении сферических треугольников по двум сторонам и углу между ними, а также по двум углам и прилежащей к ним стороне.

    Непер с самого начала вводил понятие логарифма для всех значений непрерывно меняющихся тригонометрических величин — синуса и косинуса. При тогдашнем состоянии математики, когда еще не было аналитического аппарата исчисления бесконечно малых, естественным и единственным средством для этого являлось кинематическое определение логарифма. Быть может, здесь не остались без влияния и традиции, восходившие к оксфордской школе XIV века».

    В основе определения логарифма у Непера лежит кинематическая идея, обобщающая на непрерывные величины связь между геометрической профессией и арифметической прогрессией показателей ее членов.

    Теорию логарифмов Непер изложил в сочинении «Построение удивительных таблиц логарифмов», посмертно опубликованном в 1619 году и переизданном в 1620 году его сыном Робертом Непером Вот выдержки из нее:

    «Таблица логарифмов — небольшая таблица, с помощью которой можно узнать посредством весьма легких вычислений все геометрические размеры и движения. Она по справедливости названа небольшой, ибо по объему превосходит таблицы синусов, весьма легкой, потому что с ее помощью избегают всех сложных умножений, делений и извлечений корня, и все вообще фигуры и движения измеряются посредством выполнения более легких сложения, вычитания и деления на два. Она составлена из чисел, следующих в непрерывной пропорции.

    16. Если из полного синуса с добавленными семью нулями ты вычтешь его 10000000-ую часть, а из полученного таким образом числа — его 10000000-ую часть и так далее, то этот ряд можно легко продолжить до ста чисел в геометрическом отношении, существующем между полным синусом и синусом, меньшим его на единицу, а именно между 10000000 и 9999999, и этот ряд пропорциональных мы назовем Первой таблицей.

    17. Вторая таблица следует от полного синуса с шестью добавленными нулями через пятьдесят других чисел, пропорционально убывающих в отношении, которое является простейшим и возможно более близким к отношению между первым и последним числами Первой таблицы.

    Поскольку первое и последнее числа Первой таблицы суть 10000000.0000000 и 9999900.004950, то в этом отношении трудно образовать пятьдесят пропорциональных чисел. Близким и в то же время простым отношением является 100000 к 99999, которое можно с достаточной точностью продолжить, добавив к полному синусу шесть нулей и последовательно вычитая из предшествующего его 100000-ую часть. Эта таблица содержит, кроме полного синуса, являющегося первым числом, еще пятьдесят пропорциональных чисел, последнее из которых (если ты не ошибешься) будет 9995001.222927.

    18. Третья таблица состоит из шестидесяти девяти столбцов и в каждом столбце расположено двадцать одно число, следующее в отношении, которое является простейшим и возможно более близким к отношению, существующему между первым и последним членами Второй таблицы.

    Поэтому ее первый столбец может быть очень легко получен из полного синуса с пятью добавленными нулями и из последующих чисел вычитанием из них 2000-ой части.

    19. Первые числа всех столбцов следуют от полного синуса с добавленными четырьмя нулями в отношении, которое является простейшим и близким к отношению, существующему между первым и последним числами первого столбца...

    20. В том же отношении должна быть образована прогрессия со второго числа первого столбца для вторых чисел всех столбцов, и с третьего для третьих, и с четвертого для четвертых, и соответственно с остальных для остальных.

    Таким образом, из любого числа предыдущего столбца вычитанием его сотой части получается число того же порядка следующего столбца...

    21.... этих трех таблиц (после их составления) достаточно для вычисления таблицы логарифмов».

    В 1620 году швейцарец Иост Бюрги (1552—1632) — высококвалифицированный механик и часовых дел — мастер опубликовал книгу «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях» (1620).

    Как писал сам Бюрги, он исходил из соображений о соответствии между умножением в геометрической прогрессии и сложением в арифметической. Задача состояла в выборе прогрессии со знаменателем, достаточно близким к единице, с тем, чтобы ее члены следовали друг за другом с интервалами, достаточно малыми для практических вычислений.

    Однако таблицы Бюрги не получили значительного распространения. Они не могли конкурировать с таблицами Непера, более удобными и к тому времени уже широко известными.

    Ни у Непера, ни у Бюрги не было, строго говоря, основания логарифмов, поскольку логарифм единицы отличается от нуля. И значительно позднее, когда уже перешли к десятичным и натуральным логарифмам, еще не было сформулировано определение логарифма, как показателя степени данного основания.

    В руководствах оно появляется впервые, вероятно, у В Гардинера (1742). Впрочем, сам Гардинер использовал при этом бумаги преподавателя математики В Джонса Широкому распространению современного определения логарифма более других содействовал Эйлер, который применил в этой связи и термин «основание».

    Термин «логарифм» принадлежит Неперу, он возник из сочетания греческих слов «отношение» и «число», и означает «число отношения». Хотя первоначально Непер пользовался другим термином — «искусственные числа»

    Таблицы Непера, приспособленные к тригонометрическим вычислениям, были неудобны для действий с данными числами. Чтобы устранить эти недостатки, Непер предложил составить таблицы логарифмов, приняв за логарифм единицы нуль, а за логарифм десяти просто единицу. Это предложение он сделал в ходе обсуждения с посетившим его в 1615 году профессором математики Грешем колледжа в Лондоне Генри Бригсом (1561 — 1631), который и сам задумывался, как усовершенствовать таблицы логарифмов. Заняться осуществлением своего плана Непер не мог из-за пошатнувшегося здоровья, но указал идею двух вычислительных приемов, развитых далее Бригсом.

    Бриге опубликовал первые результаты своих кропотливых вычислений — «Первую тысячу логарифмов» (1617) в год смерти Непера. Здесь даны были десятичные логарифмы чисел от 1 до 1000 с четырнадцатью знаками Большинство десятичных логарифмов простых чисел Бриге нашел с помощью извлечения квадратных корней Позднее, уже став профессором в Оксфорде, он выпустил «Логарифмическую арифметику» (1624). В книге содержались четырнадцатизначные логарифмы чисел от 1 до 20 000 и от 90 000 до 100 000.

    Оставшийся пробел был восполнен голландским книготорговцем и любителем математики Андрианом Флакком (1600—1667). Несколько ранее семизначные десятичные таблицы логарифмов синусов и тангенсов вычислил коллега Бригса по Грешем колледжу, воспитанник Оксфордского университета Эдмунд Гунтер (1581—1626), опубликовавший их в «Своде треугольников» (1620).

    Открытие Непера в первые же годы приобрело исключительно широкую известность. Составлением логарифмических таблиц и совершенствованием их занялись очень многие математики. Так, Кеплер в Марбурге в 1624—1625 годах применил логарифмы к построению новых таблиц движений планет. В приложении ко второму изданию «Описания» Непера (1618) было вычислено и несколько натуральных логарифмов. Здесь можно усмотреть подход к введению предела. Вероятнее всего, это дополнение принадлежит В. Отреду. Вскоре лондонский учитель математики Джон Спейделл издал таблицы натуральных логарифмов чисел от 1 до 1000. Термин «натуральные логарифмы» ввели П. Менголи (1659), а несколько позднее — Н Меркатор (1668).

    Практическое значение вычисленных таблиц было очень велико. Но открытие логарифмов имело также глубочайшее теоретическое значение. Оно вызвало к жизни исследования, о которых не могли и мечтать первые изобретатели, преследовавшие цель только облегчить и ускорить арифметические и тригонометрические выкладки с большими числами. Открытие Непера, в частности, открыло путь в область новых трансцендентных функций и сообщило мощные стимулы в развитии анализа.

    www.iq-coaching.ru


    Смотрите также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>