Кто придумал алгебру


История возникновения алгебры и ее развития

История возникновения алгебры уходит своими корнями в глубокую древность. Очевидно, ее появление было вызвано и непосредственно связано с первыми астрономическими и другими расчетами, так или иначе использующими натуральные числа и арифметические операции. История возникновения алгебры подтверждается подобными оригинальными записями, найденными среди образцов письменности самых ранних цивилизаций. К примеру, египтяне и вавилоняне уже умели решать простейшие уравнения первой и второй степеней, квадратные уравнения. Но их вычисления носили строго практический характер. История возникновения алгебры, как теоретической науки, приводит нас в античную Грецию. Именно здесь в IV веке появилось первое сочинение, которое являлось непосредственным исследованием абстрактных алгебраических вопросов. Это был трактат мыслителя Диофанта. Здесь уже четко обозначены простейшие алгебраические аксиомы: правила знаков (минус на минус – плюс, и так далее), примеры достаточно сложных задач, исследование числовых степеней, решения вопросов, связанных с теорией чисел и так далее. К сожалению, это единственный труд, который дошел до нас из седых древних времен, да и то не в полном объеме.

Арабская математика

С крушением античной цивилизации под натиском варварских народов теряются и многие ее достижения. В том числе и история алгебры прерывает свое развитие у европейских народов на целое тысячелетие. С VII века центром множества наук, а математики и медицины особенно, становится мусульманский Восток. Собственно, само слово «алгебра», как считается сегодня, происходит от названия трактата арабского ученого Ал-Хорезми «Аль-джабо-аль-мукабалла», что переводилось, как «учение об отношениях, перестановках и решениях». Интересно, что от самого имени этого математика некоторые ученые выводят этимологию слова «алгоритм». Как бы то ни было, но именно арабский мир на долгие столетия становится светочем науки. Вместе с тем восточные последователи, очевидно, опирались на некоторые греческие достижения. Во всяком случае, точно известно, что им были известны труды античных математиков. С одной стороны, мусульманам действительно принадлежит заслуга сохранения для мира античного алгебраического наследия, но вместе с тем, за несколько столетий они так и не внесли в развитие этой науки новых существенных открытий. Математика изучалась, но не совершенствовалась.

Математика и другие цивилизации

Интересно, что история возникновения алгебры вовсе не ограничивается Европой и имеющей с ней связь арабской цивилизацией. Так, существенных результатов в этой науке достигли индийские математики. В частности, именно они ввели понятие «нуля», которое позже через арабский мир пришло в Европу и стало использоваться учеными. Китайцы совершенно независимо, еще на заре нашей эры, научились решать уравнения первой степени. Им были известны иррациональные и отрицательные числа.

Европа возвращает лидерство

Прерванная история развития алгебры вновь начинает свой отсчет уже в Новое время. Первым сочинением после трактата Диофанта считается труд купца из Италии Леонардо, который познакомился с арифметикой и алгеброй, путешествуя по востоку. Постепенное разложение феодализма, а вместе с ним церковной схоластики и догматики, неторопливая поступь капитализма и стремление к территориальным открытиям привели к возрождению все научные отрасли на континенте. И уже спустя пару столетий Европа вновь становится передовым в научном и техническом плане регионом.

fb.ru

Кто придумал алгебру?

К временам глубокой древности уходят истоки алгебры. Арифметические действия над дробями и натуральными числами, которые представляют собой простейшие алгебраические операции, можно встретить в ранних математических текстах. В 1650 году до нашей эры писцы из Египта умели решать отвлеченные уравнения первой степени, а так же простейшие уравнения степени под номером два, для того чтобы было проще воспринимать отметим, что к числу вышеуказанных уравнений относятся задачи 26 и 33 из папируса Ринда и задача 6 из Московского папируса. По многочисленным предположениям ученых, для решения данных задач использовалось правило ложного положения, данное правило изредка использовалось вавилонами.

Математики из Вавилона умели решать квадратные уравнения, при этом дело имелось исключительно с положительными корнями уравнения и коэффициентами, все дело в том, что люди еще не предполагали о существовании отрицательных чисел. Если обратиться к древним реконструкциям, то из них следует, что вавилоняне могли знать либо правило для произведения суммы и разницы либо правило для квадрата суммы, стоит отметить, что метод вычисления корня того времени полностью соответствует формуле современного типа. Иногда можно встретить уравнения третьей степени, так же непосредственно в Вавилоне была выведена терминология особого типа, для обозначения первого неизвестного использовались шумерские клинописные знаки, данные знаки так же предусматривались для обозначения второго и третьего неизвестного. Для того чтобы уметь решать квадратные уравнения необходимо обладать навыками по осуществлению различных тождественных алгебраических преобразований, а так же оперировать неизвестными величинами. В процессе продвижения был выделен целый класс задач, для решения которых необходимо пользоваться алгебраическими приёмами.

Алгебра представляет собой науку, которая занимается изучением алгебраических систем с точностью до изоморфизма. В свою очередь алгебра разделяется на следующие классы:

  1. Элементарная алгебра.
  2. Общая алгебра.
  3. Линейная алгебра.
  4. Универсальная алгебра.
  5. Алгебраическая численная теория.
  6. Алгебраическая геометрия.
  7. Алгебраическая комбинаторика.

pochemuha.ru

Кто придумал алгебру? История алгебры.. Содержание Определение История развития Греция Азия Ученые Список литературы Авторы. - презентация

1 Кто придумал алгебру? История алгебры.

2 Содержание Определение История развития Греция Азия Ученые Список литературы Авторы

3 Определение Алгебра (от араб. الجبر, «аль-джабр» восполнение) раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики.араб.

4 История развития алгебры Больше 4000 лет назад вавилонские ученые решали квадратные уравнения системы двух уравнений, из которых одно - второй степени. К содержанию

5 Греция Первые сокращенные обозначения для неизвестных величин. К содержанию Диофант (2-3 век)

6 Азия Основоположником алгебры, как особой науки нужно считать среднеазиатского ученого Мухаммеда из Хорезма, известного под арабским прозвищем Аль- Хорезми (Хорезмианец). К содержанию Аль-Хорезми ( )

7 Выдающиеся ученые Лука Пачоли ( ) Леонардо Пизанский (Фибоначчи) ( ) Рене Декарт ( ) Пифагор Самосский ( до н.э.) К содержанию

8 Часы

9 Список литературы Ru.wikipedia.org/wiki/История_алгебры К содержанию

10 Авторы Дивисенко Дарья Завгородняя Альбина К содержанию

www.myshared.ru

Умности: о происхождении слова «алгебра»

Ещё давным-давно слышал, что слово алгебра имеет арабское происхождение и восходит к названию какой-то книги ал-Хорезми. Но как именно восходит — нигде не объяснялось (ну, во всяком случае, мне такое объяснение не попадалось). К счастью, сегодня это выяснилось вполне исчерпывающим образом, чем и спешу поделиться с вами. Ниже приводится цитата из книги Г. И. Глейзера «История математики в школе» (изд. «Просвещение», М., 1964, стр. 143-144), которую я читаю в настоящее время.

В истории арифметики и алгебры большое значение имеют труды Мухаммеда ал-Хорезми. Написанный им в начале IX века алгебраический трактат, известный под названием «Китаб ал-джебр ва-л-мукабала» (Книга об алджебр и алмукабале), явился первым в мире самостоятельным сочинением по алгебре. Для ал-Хорезми алгебра — это искусство решения уравнений, необходимое людям — как писал он — «в случаях наследования, наследственных пошлин, раздела имущества, торговли и во всех их деловых взаимоотношениях, или же в случае измерения земель, проведения каналов, геометрических вычислений и других предметов различного рода...»Уравнения ал-Хорезми решает с помощью двух приёмов:

а) aлджебр («восстановление»), то есть перенесение вычитаемых (отрицательных) членов из одной части уравнения в другую. Дело в том, что в то время отрицательные числа считались абсурдными, фиктивными; перенесение же их с противоположным знаком в другую часть уравнения и превращение их таким образом в положительные числа как бы восстанавливало их, превращало в настоящие числа;

б) алмукабала («противопоставление») — отбрасывание из обеих частей уравнения одинаковых членов, вроде нашего приведения подобных членов.Пусть, например, имеется уравнение:7x − 11 = 3x − 3Приём «алджебр» даст:7x + 3 = 3x + 11.Применяя «алмукабала», отнимаем 3x и 3 из обеих частей уравнения, после чего получаем:4x = 8.Отсюда:x = 2.

Из заглавия книги ал-Хорезми и взято название «алгебра».

К слову, злосчастную комету, о которой писал в предыдущей записи, понаблюдать пока что не довелось — погода в Симферополе стоит пасмурная, и даже при некоторых прояснениях запад (где и должна наблюдаться комета) вечером постоянно затянут. Будем ждать... Кто-нибудь видел?

mevamevo.livejournal.com


Смотрите также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>