Кто изобрел турбореактивный двигатель


Двигатель-труба: Вершина технологии

Вторую половину XX века можно смело назвать веком газотурбинных двигателей: именно они сделали возможным массовые путешествия на большие расстояния, обеспечили трансконтинентальную перекачку газа и выработали огромное количество электроэнергии. К тому же газотурбинный двигатель по праву считается самым технологически сложным механизмом ушедшего века. Намного сложнее ядерного реактора.

Появлению турбореактивных двигателей человечество обязано двум странам: Великобритании и Германии, которые в течение всех 1930-х годов успешно работали над этой проблемой. Перед Второй мировой войной стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу — как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель. Принцип его довольно прост: представим себе трубу вдоль летящего самолета; с той стороны, откуда поступает набегающий воздух, труба постепенно сужается, воздух там замедляется и его давление увеличивается. В этой части в него впрыскивается горючее — обычно авиационный керосин. После сгорания топливовоздушной смеси раскаленные газы стремительно расширяются и через сопло с обратной стороны трубы выбрасываются в сторону, противоположную движению самолета. В принципе все просто, за исключением того, что для создания необходимого сжатия воздуха самолет должен лететь со скоростью, достигающей (или превышающей) скорость звука. С такими скоростями в начале века летали разве что снаряды.

Теоретическое решение тоже несложное: чтобы двигатель заработал на земле, в трубу следовало компрессором принудительно нагнетать воздух. В 1929 году молодому англичанину Фрэнку Уиттлу пришла идея, как все это реализовать на практике: объединить на общем валу компрессор и газовую турбину, которая и приводила бы в действие компрессор. За прошедшие 80 лет принципиальная схема газотурбинных двигателей не изменилась. 30 января 1930 года Уиттл подал заявку и спустя 18 месяцев получил патент на конструкцию газотурбинного двигателя (ГТД). Собственно, этот патент и дает Фрэнку Уиттлу право называться отцом ГТД.

Германский вопрос

Тем не менее родиной серийного турбореактивного двигателя суждено было стать совсем другой стране — Германии. В 1935 году немецкий физик Ханс-Иоахим Пабст фон Охайн получил патент на реактивную самолетную установку, состоящую из двухступенчатого компрессора (осевого вентилятора и расположенного за ним центробежного компрессора) и центростремительной турбины. Такая схема в общих чертах соответствовала изобретению Фрэнка Уиттла, но точно не известно, был ли в то время Пабст фон Охайн знаком с ним. Идея турбореактивного двигателя витала в воздухе.

Потратив на постройку прототипа все свои сбережения, фон Охайн вполне мог разделить судьбу ныне позабытых изобретателей, если бы его университетский профессор не представил его Эрнсту Хейнкелю, одному из самых прогрессивных авиапромышленников середины века. Достаточно упомянуть, что фирма Хейнкеля единственная в мире в конце 1930-х годов проектировала турбореактивные и ракетные самолеты. Через год Пабст фон Охайн изготовил для Хейнкеля первый двигатель HeS 1, а к середине 1939 года — уже готовую к установке на самолет модель HeS 3. 27 августа 1939 года взлетел He 178 — первый в мире самолет, использовавший для полета энергию только турбореактивного двигателя. Приступив к разработке собственного двигателя на пять лет позже Уиттла, фон Охайн поднял свой самолет в воздух почти на два года раньше англичанина — экспериментальный Gloster E.28/39 с двигателем Уиттла Power Jets W.1 (Whittle N1) взлетел только 15 мая 1941 года. Причина такого резкого рывка Германии кроется прежде всего в широкой финансовой и организационной поддержке авиадвигателестроения со стороны немецкого правительства.

Однако дальнейшая судьба обоих изобретателей сложилась довольно грустно. Несмотря на то, что турбореактивный самолет Хейнкеля взлетел первым в мире, а в начале 1940-х годов компания разработала практически все современные типы турбореактивных двигателей, в серию не пошел ни один двигатель Хейнкеля и, соответственно, фон Охайна — руководство рейха решило, что самолетостроительная компания должна заниматься самолетами, оставив двигатели двигателестроителям.

После того как турбореактивными двигателями всерьез заинтересовалось правительство Великобритании и запахло большими деньгами, дни компании Уиттла Power Jets были сочтены. По распоряжению кабинета министров документация на все разработки Уиттла была передана компаниям Rover, Rolls-Royсe и de Havilland, а его фирма личным указом Черчилля была национализирована и преобразована в Национальный газотурбинный исследовательский центр.

Интересно, что два легендарных изобретателя конец своей жизни провели в США, так и не погасив в себе чувства обиды, и даже стали там большими друзьями. В Америке их ждало всемирное признание и огромное количество разнообразных премий и наград, в том числе премия за технологию имени Чарльза Старка Дрейпера — американского специалиста в области аэронавтики и навигационного приборостроения, — которую они совместно получили в 1992 году.

Первый серийный

Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: помимо уже упоминавшегося Heinkel, BMW, Daimler-Benz, Focke-Wulf, Walter и даже Porsche. Тем не менее основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109−004 (такое вот незамысловатое название), устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Основанная в 1913 году легендарным авиаконструктором и двигателистом Гуго Юнкерсом компания Junkers к началу 1940-х была единственной германской фирмой с одинаково сильными как самолетостроительными, так и двигателестроительными традициями и промышленными мощностями. Свои первые газотурбинные двигатели инженеры Юнкерса начали разрабатывать еще в 1935 году, однако по экзотической схеме со свободнопоршневым турбокомпрессором, которая оказалась тупиковой. К 1938 году над проектами турбореактивных двигателей в Junkers трудилось более 30 инженеров под руководством доктора Ансельма Франца. К 1939 году Франц отказался от всех разрабатывавшихся ранее схем двигателей и принялся с нуля конструировать двигатель, впоследствии получивший обозначение Jumo 109−004. Ансельм Франц остановился на осевом компрессоре, который по сравнению с более распространенными в то время центробежными компрессорами обеспечивал более прямое прохождение нагнетаемого воздуха сквозь двигатель и позволял создать двигатель с меньшей лобовой площадью. Было решено использовать шесть отдельных трубчатых камер сгорания вместо единой кольцевой, так как трубчатые камеры было проще разрабатывать и испытывать. Генеральным направлением Ансельма Франца был курс на максимальное упрощение конструкции даже в ущерб характеристикам, чтобы не возникли трудности с освоением и серийным производством двигателя.

И этот подход себя полностью оправдал. Дело в том, что первоначально планировалось устанавливать на Me 262 более совершенный двигатель BMW 109−003. Однако баварские инженеры не смогли довести двигатель к нужному сроку — вместо 1940 года он был готов к летным испытаниям только в октябре 1943-го. К этому времени опытные Me 262 (с 18 июля 1942 года) вовсю летали на двигателях Jumo 109−004A, которые изначально рассматривались как резервные. Мало того, в июне 1943 года с заводов Юнкерса стали выходить пусть еще и «сырые», но уже серийные двигатели Jumo 109−004 B-1. Впервые в мире.

Трофейные технологии

В качестве трофеев союзникам досталось огромное количество двигателей Jumo 109−004 — как установленных на Me 262, так и найденных на захваченных заводах. Мало того, рядом с немецкими предприятиями солдат союзных войск зачастую встречали целые свалки двигателей и их запчастей — компании Junkers так и не удалось до конца войны полностью довести двигатель, и значительная часть продукции уходила в брак.

К полученным трофеям у союзников было неоднозначное отношение. Заключение экспертов из фирмы British Power Jets было категоричным: «На этом двигателе едва ли можно научиться чему-либо полезному с точки зрения разработки газотурбинных двигателей в будущем». Такого же мнения придерживались и американцы. СССР и Франция, не имевшие на конец войны сколько-нибудь значительных собственных разработок в этой сфере, основной упор сделали на копирование германских силовых установок, пусть и в качестве временной, вынужденной меры. Первый французский реактивный самолет Sud-Ouest Triton, поднявшийся в небо 11 ноября 1946 года, был оборудован как раз трофейными Jumo 109−004.

СССР подошел к германскому наследию масштабнее: в 1946 году на Волгу в городок ГАЗ-19 вблизи Куйбышева были почти полностью вывезены заводы Юнкерса из Дессау и Бернберга вместе с немецкими и австрийскими инженерами, не успевшими удрать из советской зоны оккупации. Под руководством советского конструктора Н.Д. Кузнецова они организовали зимой 1946−1947 годов выпуск двигателя РД-10 — советского клона Jumo 109−004, которым и оснащались первые советские истребители Як-15, а впоследствии и Як-17, Як-19, Су-9 и т. д. В итоге получилось, что на двигателях Ансельма Франца взлетел не только первый немецкий, но и первый французский и первый советский самолеты.

Конец немецкой эпохи

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе. В конце Второй мировой войны советскому правительству чудом удалось купить у Великобритании новейшие совершенно секретные турбореактивные двигатели Rolls-Royce моделей Derwent и Nene, которые были испытаны и уже через год подготовлены к производству. Двигатель Derwent копировал Завод №500, а Nene — Завод №45. Соответственно, и двигатели получили незамысловатые названия РД-500 и РД-45. Усовершенствованная копия Nene носила и второе название — ВК-1, по имени советского конструктора, курировавшего проект, — Владимира Климова. В ВК-1 увеличили камеры сгорания, размеры лопаток турбины и установили выходные устройства трубного вида, что способствовало большему забору воздуха.

Судьба РД-500 сложилась не слишком удачно, а вот ВК-1, серийно выпускавшийся до 1958 года, стал бестселлером с тиражом около 20 тысяч экземпляров. Он устанавливался, например, на легендарных МиГ-15 и МиГ-17, ставших одними из самых лучших турбореактивных истребителей второго поколения в мире, что и показали бои в Юго-Восточной Азии. Больше в мире никто ничьих двигателей не копировал. Все мировые гиганты пошли собственным путем.

Статья опубликована в журнале «Популярная механика» (№9, Сентябрь 2007).

www.popmech.ru

Первые реактивные самолеты

Изобретателем турбореактивного двигателя является англичанин Френк Уиттл. В 1928 году он, будучи слушателем авиационной школы, предложил первую модель двигателя с газовой турбиной и в 1930 году получил на него патент.

Изобретение не привлекло к себе внимания правительства и Уиттл был вынужден искать другого источника финансирования своих разработок. В 1937 году, благодаря поддержке нескольких частных фирм, был изготовлен первый в мире турбореактивный двигатель. Он был разработан по проекту Уиттла компанией «Бритиш-Томсон-Хаустон». После этого правительство решило финансировать разработки Уиттла.

Двигатель Охайна

Heinkel He.178

В то же время немецкий изобретатель Охайн разработал свой турбореактивный двигатель (который по конструкции был очень похож на двигатель Уиттла). Будучи еще студентом, он в 1936 году запатентовал свое изобретение и уже в 1938 году фирма «Хейнкель» приступила к разработке двигателя по его проекту. 27 августа 1939 года первый реактивный самолет Не-178, оснащенный двигателем HeS-3В, совершил успешный полет. Самолет все еще имел деревянные крылья, но фюзеляж был изготовлен из дюралюминия. Двигатель работал на бензине и развивал тягу до 500 кг. Максимальная скорость самолета достигала 700 км/ч.

В 1941 году Охайн разработал новую модель двигателя с тягой 600 кг. Самолет, оснащенный двумя такими двигателями, развивал скорость до 925 км/ч. Но двигатель оказался не очень надежным, потому истребитель не был запущен в серийное производство (было изготовлено только 8 таких самолетов).

«Глостер G-40»

Глостер G-40

В том же 1941 году фирма «Бритиш-Томсон-Хаустон» выпустила самолет «Глостер G-40» с специально разработанным для него двигателем. В мае самолет совершил свой первый полет и оказался значительно хуже немецкого – он мог развивать скорость всего 480 км/ч. В 1943 году свет увидел второй «Глостер G-40»(с улучшенным двигателем), но и он не мог равняться с изобретениями Охайна – максимальная скорость самолета была всего 500 км/ч.

Производство самолетов с турбореактивными двигателями выглядело перспективным делом и вскоре несколько английских фирм начали производить модификации двигателей Уиттла. Фирма «Ровер» изготовила двигатели W2D/23 и W2D/26, а «Роллс-Ройс», выкупив их, представила свои модели – «Уэллэнд» и «Дервент».

Первое серийное производство турбореактивных самолетов

Messerschmitt Me 262

Первым в мире турбореактивным серийным самолетом стал немецкий «Мессершмитт» Ме-262. Он имел два двигателя с тягой 900 кг и развивал скорость до 845 км/ч. Первый самолет испытывался в 1942 году, а всего было выпущено 1300 таких машин.

Первый английский реактивный серийный самолет появился в 1943 году. Это был «Глостер G-41 Метеор», оснащенным двумя двигателями «Дервент». Он развивал скорость до 760 км/ч и летал на высоте 9000 м. Позже были выпущены самолеты с более сильными двигателями (с тягой 1600 кг), что позволило развивать скорость до 935 км/ч. Самолет очень хорошо себя зарекомендовал и производился до конца 40-х годов.

Статья подготовлена по материалам книги: К. Рыжов «100 великих изобретений», 2006 г.

www.thingshistory.com

Турбореактивный двигатель. Элементы конструкции.

Турбореактивный двигатель.

В этой  статье вернемся к моим любимым двигателям. Я уже ранее говорил о том, что турбореактивный двигатель в современной авиации – основной. И упоминать его в той или иной теме мы еще будем часто.  Поэтому пришла пора окончательно определиться с его конструкцией. Конечно же не углубляясь во всевозможные дебри и тонкости :-). Итак авиационный турбореактивный двигатель. Каковы основные части его конструкции, и как они взаимодействуют между собой.

1.Компрессор   2.Камера сгорания  3.Турбина  4. Выходное устройство или реактивное сопло.

Компрессор сжимает воздух до необходимых величин, после чего воздух поступает в камеру сгорания, где подогревается до необходимой температуры за счет сгорания топлива и далее уже получившийся газ поступает на турбину, где отдает часть энергии вращая ее (а она, в свою очередь компрессор), а другая часть при дальнейшем разгоне газа в реактивном сопле превращается в импульс тяги, которая и толкает самолет вперед. Этот процесс достаточно хорошо виден в ролике в статье о двигателе, как тепловой машине.

Турбореактивный двигатель с осевым компрессором.

Компрессоры бывают трех видов. Центробежные, осевые и смешанные. Центробежные обычно представляют собой колесо, на  поверхности которого выполнены  каналы, закручивающиеся от центра к периферии, так называемая крыльчатка.При ее вращении воздух отбрасывется по каналам центробежной силой от центра к периферии, сжимаясь сильно разгоняется и далее попадая в расширяющиеся каналы (диффузор) тормозится и вся его энергия разгона тоже превращается в давление. Это немного похоже на старый аттракцион, который раньше в парках был, когда люди становятся по краю большого горизонтального  круга, опираясь спиной на специальные вертикальные спинки, этот круг вращается, наклоняясь в разные стороны и люди не падают, потому что их держит (прижимает) центробежная сила. В компрессоре принцип тот же.

Этот компрессор достаточно прост и надежен, но для создания достаточной степени сжатия нужен большой диаметр крыльчатки, что не могут себе позволить самолеты, особенно небольших размеров. Турбореактивный двигатель просто не влезет в фюзеляж. Поэтому применяется он мало. Но в свое время  он был применен  на двигателе ВК-1 (РД-45), который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

Крылчатка центробежного компрессора на одном валу с турбиной.

Крыльчатки центробежного компрессора.

Двигатель ВК-1. В разрезе хорошо видна крыльчатка центробежного компрессора и далее две жаровые трубы камеры сгорания.

Истребитель МИГ-15

В основном сейчас используется осевой компрессор. В нем на одной вращающейся оси (ротор) укреплены металлические диски (их называют рабочее колесо), по венцам которых размещены так называемые «рабочие лопатки». А между венцами вращающихся рабочих лопаток размещены венцы неподвижных лопаток ( они бычно крепятся на наружном корпусе), это так называемый направляющий аппарат (статор). Все эти лопатки имеют определенный  профиль и несколько закручены, работа их в определенном смысле похожа на работу все того же крыла или лопасти вертолета, но только в обратном направлении. Теперь уже не воздух действует на лопатку, а лопатка на него. То есть компрессор совершает механическую работу (над воздухом :-)). Или еще более нагляднее :-).  Все знают вентиляторы, которые так приятно обдувают в жару. Вот вам пожалуйста, вентилятор и есть рабочее колесо осевого компрессора, только лопастей конечно не три, как в вентиляторе, а побольше.

Примерно так работает осевой компрессор.

Конечно очень упрощенно, но принципиально именно так. Рабочие лопатки «захватывают» наружный воздух, отбрасывают его внутрь двигателя, там лопатки направляющего аппарата определенным образом  направляют его на следующий ряд рабочих лопаток и так далее. Ряд рабочих лопаток вместе с рядом следующих за ними лопаток направляющего аппарата образуют ступень. На каждой ступени происходит сжатие на определенную величину. Осевые компрессоры бывают с разным количеством ступеней. Их может быть пять, а может быть и 14. Соответственно и степень сжатия может быть разная, от 3 до 30 единиц и даже больше.  Все зависит от типа и назначения двигателя (и самолета соответственно).

Осевой компрессор достаточно эффективен. Но и очень  сложен как теоретически, так и конструктивно.  И еще у него есть существенный недостаток:  его сравнительно          легко повредить. Все посторонние предметы с бетонки  и птиц вокруг аэродрома он       как говорится принимает на себя и не всегда это обходится без последствий.

Камера сгорания. Она опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб (они называются жаровые трубы). Для организации процесса горения в комплексе с воздушным охлаждением она вся «дырчатая». Отверстий много, они разного диаметра и формы. В жаровые трубы подается через специальные форсунки топливо (авиационный керосин), где и сгорает, попадая в область высоких температур.

Турбореактивный двигатель (разрез). Хорошо видны 8-ми ступенчатый осевой компрессор, кольцевая камера сгорания, 2-ухступенчатая турбина и выходное устройство.

Далее горячий газ попадает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. ЕЕ раскручивает горячий газ по тому же принципу, как воздух детскую игрушку- пропеллер. Неподвижные лопатки в ней находятся не за вращающимися рабочими, а перед ними и называются сопловым аппаратом. Ступеней у турбины немного, обычно от одной до трех-четырех. Больше и не надо, ведь для привода компрессора хватит, а остальная энергия газа потратится в сопле на разгон и получение тяги. Условия работы турбины мягко говоря «ужасные». Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения (до 30000 об/мин). Представляете какая центробежная сила действует на лопатки и диски! Да плюс факел из камеры сгорания с температурой от 1100 до 1500 градусов Цельсия. Вобщем ад :-). Иначе не скажешь. Я был свидетелем, когда при взлете самолета Су-24МР оборвалась рабочая лопатка турбины одного из двигателей. История поучительная, обязательно о ней расскажу в дальнейшем. В современных турбинах применяются достаточно сложные системы охлаждения, а сами они (особенно рабочие лопатки) изготавливаются из особых жаропрочных и жаростойких сталей. Эти стали достаточно дороги, да и весь турбореактивный двигатель в плане материалов очень недешев. В 90-е годы, в эпоху всеобщего разрушения на этом нажились многие нечистые на руку люди, в том числе и военные. Об этом тоже как-нибудь позже…

СУ-24МР

После турбины – реактивное сопло. В нем, собственно, и возникает тяга турбореактивного двигателя. Сопла бывают просто сужающиеся, а бывают сужающе-расширяющиеся. Кроме того бывают неуправляемые (такое сопло на рисунке), а бывают управляемые, когда их диаметр меняется в зависимости от режима работы. Более того сейчас уже есть сопла, которые меняют направление вектора тяги, то есть попросту поворачиваются в разные стороны.

Турбореактивный двигатель – очень сложная система. Летчик управляет им из кабины всего лишь одним рычагом – ручкой управления двигателем (РУД). Но на самом деле этим он лишь задает нужный ему режим. А все остальное берет на себя автоматика двигателя. Это тоже большой и сложный комплекс и еще скажу очень хитроумный. Когда еще будучи курсантом изучал автоматику, всегда удивлялся, как конструкторы и инженеры все это понапридумывали:-), а рабочие-мастера изготовили.  Сложно… Но зато интересно 🙂 …

Вот и все пока. Вкратце опять  не получилось :-). Но я все же надеюсь, что вам было интересно. До следующей встречи.

P.S. А вот вам напоследок атракцион, о котором я выше писал. Я на нем в детстве-то не катался, а сейчас их просто нет у нас. Так что знаю только в теории :-).

Вот такой он был, может и сейчас где-то работает...

Фото кликабельны.

{lang: 'ru'}

Related posts:

avia-simply.ru

Турбореактивный двигатель вчера и сегодня :

Турбореактивный двигатель является одним из важнейших механизмов, который изобрели в двадцатом столетии. Поговорим о том, что сопутствовало этому открытию, каковы модели этого устройства сегодня и можно ли изготовить его самостоятельно.

Немного истории

Когда в 1903 году первый самолет братьев Райт с поршневым ДВС поднялся в воздух, советский ученый Константин Циолковский написал труд о применении реактивной тяги для преодоления гравитации. В нем были приведены основные идеи теории реактивного движения. Как всегда бывает с гениальными открытиями, его работу не восприняли всерьез. Лишь десятки лет спустя суждено было сбыться тому, что ученый уже давно зафиксировал на бумаге.

Так случилось, что турбореактивный двигатель был принят к серийному производству в Германии в конце тридцатых годов. В проекте приняли участие такие известные компании, как «Хейникель», «БМВ», «Дэймлер-Бенс» и «Порш». Но главным производителем стал все-таки «Джанкерс».

Несмотря на успех, развиваться это направление в то время не стало.

В Советском Союзе разработкой начал заниматься авиаконструктор Архип Люлька. В первой половине сорокового года он запатентовал схему, на которой был двухконтурный турбореактивный двигатель. К сожалению, руководство страны тогда не поддержало ученого, хотя позже он и получил признание во всем мире. Архипу Люльке было предписано заниматься танковыми разработками. К турбореактивным двигателям он вернулся только после того, когда они появились в Германии.

Первые испытания двигателя были проведены в 1947 году.

Принцип работы

Турбореактивный двигатель функционирует как обычная тепловая машина. Не вдаваясь в подробности, его механизм можно описать как служащий для преобразования энергии в механическую работу. Газ внутри устройства имеет энергию. Сжимаясь, рабочее тело получает ее, а при расширении происходит преобразование в полезную работу.

Энергия и последующая работа для сжатия газа всегда должна быть меньшей по сравнению с той, что необходима для расширения. В противном случае преобразования не получится. Поэтому перед расширением газ нагревают, а перед сжатием — охлаждают. Тогда в результате нагрева появится некоторый излишек энергии, которым воспользуются для получения механической работы.

Устройство

Рабочее тело двигателя состоит из:

  • компрессора, служащего для сжатия воздуха;
  • камеры сгорания для нагревания;
  • турбины для расширения.

Охлаждающий эффект обеспечивается атмосферой.

В компрессоре имеются диски из металла, а на их венцах расположены лопатки, которые захватывают воздух снаружи и перемещают внутрь.

От компрессора воздух направляется в камеру сгорания, нагреваясь и смешиваясь с керосином, попадающим туда через ротор.

Далее действие переходит в турбину, где газ раскручивается подобно игрушке-пропеллеру. Обычно турбины имеют три-четыре ступени. Именно на этот механизм приходится наибольшая нагрузка. Турбореактивный двигатель вращается со скоростью до тридцати тысяч оборотов в минуту. Факел, выходящий из камеры сгорания, может иметь температуру до полутора тысяч градусов по Цельсию. Воздух, расширяясь здесь, начинает двигать турбину.

После этого в реактивном сопле рабочее тело достигает скорости большей, чем скорость встречного потока. Таким образом и получается реактивная тяга.

Виды

ТРД или турбореактивный двигатель, принцип работы которого описан выше, относится к классу газотурбинных. Он бывает:

  • ТРД;
  • ТРД с форсажной камерой;
  • двухконтурный ТРД;
  • двухконтурный ТРД с форсажной камерой.

В настоящее время известно пять поколений турбореактивных двигателей. К первому относятся еще те, которые использовались в годы войны английскими, а также фашистскими силами. Во втором поколении в нем появились осевой компрессор, форсажная камера и воздухозаборник с возможностью регулирования. В третьем — увеличилось сжатие, в четвертом — удалось поднять рабочую температуру. Пятое поколение в отечественной разработке имеет усиленную мощность и лучшую маневренность. Агрегаты, предназначенные для истребителей, выпускаются на уфимском заводе.

Турбореактивный двигатель своими руками

Любителям-моделистам, которые хотят собрать мотор самостоятельно, сегодня предлагается полный ассортимент всех запчастей. В продаже имеются специальные наборы для сборки (например, Kit). Турбину можно приобрести как готовую, так и сделать самим. Последний вариант довольно хлопотный и может также обойтись в копеечку. Это самая сложная часть для тех, кто собирает турбореактивный двигатель своими руками, так как здесь потребуются и токарно-фрезерная установка, и сварочный прибор.

Перед изготовлением стоит изучить теорию по микро-ТРД. Для этого существуют специальные руководства, где приводятся расчеты и чертежи.

А затем, можно начинать путь в авиамоделирование.

www.syl.ru


Смотрите также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>