Кто изобрел квантовый компьютер


Насколько мы близки к созданию квантового компьютера?

Гонка в самом разгаре. Ведущие компании мира пытаются создать первый квантовый компьютер, в основе которого лежит технология, давно обещающая ученым помочь в разработке дивных новых материалов, идеальном шифровании данных и точном прогнозировании изменений климата Земли. Такая машина наверняка появится не раньше чем через десять лет, но это не останавливает IBM, Microsoft, Google, Intel и других. Они буквально поштучно выкладывают квантовые биты – или кубиты – на процессорном чипе. Но путь к квантовым вычислениям включает много больше, чем манипуляции с субатомными частицами.

Кубит может представлять 0 и 1 одновременно, благодаря уникальному квантовому явлению суперпозиции. Это позволяет кубитами проводить огромное количество вычислений одновременно, значительно увеличивая вычислительную скорость и емкость. Но существуют разные типы кубиты, и не все они создаются одинаковыми. В программируемом кремниевом квантовом чипе, например, значение бита (1 или 0) определяется направлением вращения его электрона. Однако кубиты чрезвычайно хрупкие, и некоторым нужна температура в 20 милликельвинов – в 250 раз холоднее, чем в глубоком космосе, – чтобы оставаться стабильными.

Конечно, квантовый компьютер – это не только процессор. Этим системам нового поколения потребуются новые алгоритмы, новое программное обеспечение, соединения и куча еще не изобретенных технологий, извлекающих выгоду из колоссальной вычислительной мощи. Кроме того, результаты вычислений нужно будет где-то хранить.

«Если бы все не было так трудно, мы бы уже сделали один», говорит Джим Кларк, директор по квантовому оборудованию в Intel Labs. На выставке CES в этом году Intel представила 49-кубитовый процессор под кодовым названием Tangle Lake. Несколько лет назад компания создала виртуальную среду для испытаний квантового ПО; она использует мощный суперкомпьютер Stampede (в Техасском университете) для имитации 42-кубитового процессора. Однако, чтобы на самом деле понять, как писать ПО для квантовых компьютеров, нужно моделировать сотни или даже тысячи кубитов, говорит Кларк.

Scientific American взял у Кларка интервью, в котором тот рассказал о разных подходах к созданию квантового компьютера, почему они такие хрупкие и почему вся эта затея занимает так много времени. Вам будет интересно.

Чем квантовые вычисления отличаются от традиционных?

Распространенная метафора, которая используется для сравнения двух видов вычислений, — это монетка. В традиционном компьютерном процессоре транзистор либо «орел», либо «решка». Но если спросить, какой стороной смотрит монетка, когда крутится, вы скажете, что ответом может быть и то и другое. Так устроены квантовые вычисления. Вместо обычных битов, которые представляют 0 или 1, у вас квантовый бит, который одновременно представляет и 0, и 1 до тех пор, пока кубит не перестанет вращаться и не войдет в состояние покоя.

Пространство состояний – или способность перебирать огромное число возможных комбинаций – в случае с квантовым компьютером экспоненциально. Представьте, что у меня в руке две монеты и я подбрасываю их в воздух одновременно. Пока они вращаются, они представляют четыре возможных состояния. Если я подброшу три монеты в воздух, они будут представлять восемь возможных состояний. Если я подброшу в воздух пятьдесят монет и спрошу у вас, сколько состояний они представляют, ответом будет число, которое не сможет рассчитать даже самый мощный суперкомпьютер мира. Триста монет – все еще относительно небольшое число – будет представлять больше состояний, чем атомов во Вселенной.

Почему кубиты такие хрупкие?

Реальность такова, что монеты, или кубиты, в конечном итоге прекращают вращаться и коллапсируют в определенное состояние, будь то орел или решка. Цель квантовых вычислений состоит в том, чтобы поддерживать их вращение в суперпозиции в множестве состояний длительное время. Представьте, что у меня на столе крутится монетка и кто-то толкает стол. Монетка может упасть быстрее. Шум, изменение температуры, электрические флуктуации или вибрация – все это может помешать работе кубита и привести к утрате его данных. Один из способов стабилизировать кубиты определенных типов – поддерживать их в холодном состоянии. Наши кубиты работают в холодильнике размером с бочку на 55 галлонов и используют специальный изотоп гелия для охлаждения почти до температуры абсолютного нуля.

Как разные типы кубитов различаются между собой?

Существует не меньше шести или семи различных типов кубитов, и примерно три-четыре из них активно рассматриваются для использования в квантовых компьютерах. Разница в том, как манипулировать кубитами и заставить их общаться между собой. Нужно, чтобы два кубита общались между собой, чтобы проводить большие «запутанные» расчеты, и разные типы кубитов запутываются по-разному. Описанный мной тип, который требует чрезвычайного охлаждения, называется сверхпроводящей системой, которая включает наш процессор Tangle Lake и квантовые компьютеры, построенные Google, IBM и другими. Другие подходы используют осциллирующие заряды пойманных ионов – удерживаемых на месте в вакуумной камере лазерными лучами – которые выступают в роли кубитов. Intel не разрабатывает системы с пойманными ионами, потому что для этого нужно глубокое знание лазеров и оптики, нам это не под силу.

Тем не менее мы изучаем третий тип, который называем кремниевыми спин-кубитами. Они выглядят точно как традиционные кремниевые транзисторы, но оперируют одним электроном. Спин-кубиты используют микроволновые импульсы для контроля спина электрона и высвобождения его квантовой силы. Эта технология сегодня менее зрелая, чем технология сверхпроводящих кубитов, однако, возможно, имеет гораздо больше шансов масштабироваться и стать коммерчески успешной.

Как добраться до этого момента отсюда?

Первый шаг – сделать эти квантовые чипы. В то же время мы провели моделирование на суперкомпьютере. Чтобы запустить квантовый симулятор Intel, нужно порядка пяти триллионов транзисторов для моделирования 42 кубитов. Для достижения коммерческой досягаемости нужно порядка миллиона кубитов или больше, но, начав с симулятора вроде этого, можно построить базовую архитектуру, компиляторы и алгоритмы. Пока у нас не появятся физические системы, которые будут включать от нескольких сотен до тысячи кубитов, непонятно, какого рода программное обеспечение мы сможем на них запускать. Есть два способа нарастить размер такой системы: один – добавить больше кубитов, что потребует больше физического пространства. Проблема в том, что если наша цель – создать компьютеры на миллион кубитов, математика не позволит их хорошо масштабировать. Другой путь – сжать внутренние размерности интегральной схемы, но такой подход потребует сверхпроводящей системой, а она должна быть огромной. Спин-кубиты в миллион раз меньше, поэтому мы ищем другие решения.

Помимо этого, мы хотим улучшить качество кубитов, что поможет нам протестировать алгоритмы и создать нашу систему. Качество относится к точности, с которой информация передается со временем. Хотя многие части такой системы улучшат качество, самые большие успехи будут достигнуты благодаря разработке новых материалов и улучшению точности микроволновых импульсов и другой управляющей электроники.

Недавно Подкомитет по цифровой торговле и защите прав потребителей США провел слушания о квантовых вычислениях. Что законодатели хотят знать об этой технологии?

Есть несколько слушаний, связанных с разными комитетами. Если взять квантовые вычисления, можно сказать, что это технологии вычислений следующих 100 лет. Для США и других правительств вполне естественно интересоваться их возможностью. У Евросоюза есть план на много миллиардов долларов по финансированию квантовых исследований по всей Европе. Китай прошлой осенью анонсировал исследовательскую базу на 10 миллиардов долларов, которая займется квантовой информатикой. Вопрос ведь в чем: что мы можем сделать как страна на национальном уровне? Национальная стратегия квантовых вычислений должна быть в ведении университетов, правительства и промышленности, работающих совместно над разными аспектами технологии. Стандарты определенно необходимы с точки зрения коммуникаций или архитектуры программного обеспечения. Рабочая сила также представляет проблему. Сейчас, если я открываю вакансию эксперта по квантовым вычислениям, две трети заявителей, вероятно, будут не из США.

Какое влияние могут оказать квантовые вычисления на разработку искусственного интеллекта?

Как правило, первые предлагаемые квантовые алгоритмы будут посвящены безопасности (например, криптографической) или химии и моделированию материалов. Это проблемы, которые принципиально неразрешимы для традиционных компьютеров. Тем не менее есть масса стартапов и групп ученых, работающих над машинным обучением и ИИ с внедрением квантовых компьютеров, даже теоретического. Учитывая временные рамки, необходимые для разработки ИИ, я бы ожидал появления традиционных чипов, оптимизированных специально под алгоритмы ИИ, которые, в свою очередь, окажут влияние на разработку квантовых чипов. В любом случае ИИ определенно получит толчок из-за квантовых вычислений.

Когда мы увидим, что рабочие квантовые компьютеры решают реальные проблемы?

Первый транзистор был создан в 1947 году. Первая интегральная схема – в 1958 году. Первый микропроцессор Intel – который вмещал около 2500 транзисторов – вышел на свет только в 1971 году. Каждая из этих вех была разделена более чем десятилетием. Люди думают, что квантовые компьютеры вот уже за углом, но история показывает, что любые достижения требуют времени. Если через 10 лет у нас будет квантовый компьютер на несколько тысяч кубитов, это определенно изменит мир так же, как его изменил первый микропроцессор.

hi-news.ru

Новости в России и в мире — Newsland — информационно-дискуссионный портал. Новости, мнения, аналитика, публицистика.

В ходе Международной квантовой конференции в Москве российский учёный Михаил Лукин представил самый мощный на сегодняшний день 51-кубитный квантовый компьютер. Число 51 было выбрано не случайно: Google уже долгое время работает над 49-кубитным квантовым компьютером, а потому обойти конкурента было для Лукина, как для азартного учёного, делом принципа.

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, — отмечает сооснователь Российского квантового центра Сергей Белоусов. — Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью — развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, — справедливо считает Джон Мартинес. — Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита — это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Сами же кубиты, в количестве которых так неистово «соревнуются» учёные, — это вычислительный юнит, который одновременно представляет собой и ноль, и единицу, в то время как привычный бит — это либо одно, либо другое. Современные суперкомпьютеры выстраивают последовательности, а квантовые компьютеры, в свою очередь, проводят вычисления параллельно, в одно мгновение. Благодаря такому подходу вычисления, на которые сегодняшним суперкомпьютерам понадобятся тысячи лет, квантовый компьютер может осуществить моментально.

«Это одна из самых больших квантовых систем, которые были созданы, — рассказывает Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра. — Мы входим в тот режим, где уже классические компьютеры не могут справиться с вычислениями. Делаем маленькие открытия, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, но до конца не понимаем».

Пока даже создатели мощнейших квантовых компьютеров не могут сказать наверняка, зачем человечеству понадобятся настолько мощные вычислительные машины. Возможно, с их помощью будут разработаны принципиально новые материалы. Могут быть совершены новые открытия на ниве физики или химии. Или, возможно, квантовые компьютеры помогут, наконец, полностью понять природу человеческого мозга и сознания.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесёт, — полагает Руслан Юнусов, директор Российского квантового центра. — Здесь можно привести пример транзистора. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили компьютеры, никто не представлял, как сильно изменится жизнь».

 

newsland.com

Квантовый компьютер - правда или вымысел?

Последние десятилетия компьютеры развивались очень быстро. Фактически на памяти одного поколения они прошли путь от громоздких ламповых, занимающих огромные помещения до миниатюрных планшетов. Стремительно увеличивалась память и скорость. Но наступил момент, когда появились задачи, неподвластные даже сверхмощным современным компьютерам.

Что такое квантовый компьютер?

Появление новых задач, неподвластных обычным компьютерам, заставило искать новые возможности. И, как альтернатива обычным компьютерам, появился квантовый. Квантовый компьютер - это вычислительная техника, в основу действия, которой положены элементы квантовой механики. Основные положения квантовой механики были сформулированы в начале прошлого века. Ее появление позволило решить многие задачи физики, которые не находили решения в классической физике.

Хотя теория квантов уже насчитывает второе столетие, она по-прежнему остается понятной только узкому кругу специалистов. Но есть и реальные результаты квантовой механики, к которым мы уже привыкли – лазерная техника, томография. А в конце прошлого века была разработана теория квантовых вычислений советским физиком Ю. Маниным. Через пять лет Дэвид Дойч обнародовал идею квантовой машины.

Существует ли квантовый компьютер?

Но воплощение идей оказалось не столь простым. Периодически появляются сообщения о то, что создан очередной квантовый компьютер. Над разработкой такой вычислительной техники работают гиганты в области информационных технологий:

  1. D-Wave – компания из Канады, которая первой начала выпуск действующих квантовых компьютеров. Тем не менее идут споры специалистов, насколько реально являются квантовыми эти компьютеры и какие преимущества они дают.
  2. IBM – создала квантовый компьютер, причем открыла к нему доступ для пользователей интернета для экспериментов с квантовыми алгоритмами. К 2025 году компания планирует создать модель, способную решать уже практические задачи.
  3. Google – анонсировала выпуск в этом году компьютера, способного доказать превосходство квантовых на обычными компьютерами.
  4. В мае 2017 г. Китайские ученые в Шанхае заявили, что создан самый мощный квантовый компьютер в мире, превосходящий аналоги по частоте обработки сигналов в 24 раза.
  5. В июле 2017 г. На Московской конференции по квантовым технологиям было заявлено о том, что был создан 51-кубитный квантовый компьютер.

Чем отличается квантовый компьютер от обычного?

Принципиальное отличие квантового компьютера в подходе к процессу вычисления.

  1. В обычном процессоре все вычисления строятся на основе битов, бывающих в двух состояний 1 либо 0. То есть, вся работа сводится к анализу огромного количества данных на предмет соответствия заданным условиям. В основу квантового компьютера положены кубиты (квантовые биты). Их особенностью является возможность быть в состоянии 1, 0, а также одновременно 1 и 0.
  2. Возможности квантового компьютера значительно возрастают, так как нет необходимости искать нужный ответ среди множества. В этом случае ответ выбирается из уже имеющихся вариантов с определенной долей вероятности соответствия.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Как устроен квантовый компьютер?

Устройство квантового компьютера базируется на применении кубитов. В качестве физического исполнения кубитов в настоящее время используются:

  • кольца из сверхпроводников с перемычками, с разнонаправленным током;
  • отдельные атомы, под воздействием лазерных лучей;
  • ионы;
  • фотоны;
  • разрабатываются варианты использования нанокристалов полупроводников.

Квантовый компьютер - принцип работы

Если с классическим компьютером в работе есть определенность, то на вопрос, как работает квантовый компьютер, ответить непросто. Описание работы квантового компьютера основывается на двух малопонятных для большинства словосочетаниях:

  • принцип суперпозиции – речь о кубитах, способных находиться одновременно в позиции 1 и 0. Это позволяет вести одновременно несколько вычислений, а не перебирать варианты, что дает большой выигрыш во времени;
  • квантовая запутанность – феномен, отмеченный еще А. Эйнштейном, заключающийся во взаимосвязи двух частиц. Говоря простыми словами, если одна из частиц имеет положительную спиральность, то вторая моментально принимает положительную. Такая взаимосвязь происходит вне зависимости от расстояния.

Кто изобрел квантовый компьютер?

Основа квантовой механики была изложена еще в самом начале прошлого века, как гипотеза. Развитие ее связано с такими гениальными физиками, как Макс Планк, А. Эйнштейн, Поль Дирак. В 1980 г. Ю.Антонов предложил идею о возможности квантовых вычислений. А уже через год Ричард Фейнеман в теории смоделировал первый квантовый компьютер.

Сейчас создание квантовых компьютеров в стадии разработок и даже трудно предположить, на что способен квантовый компьютер. Но абсолютно ясно, освоение этого направления принесет людям много новых открытий во всех областях науки, позволит заглянуть в микро и макромир, узнать больше о природе разума, генетики.

Статьи по теме:
Что такое интерфейс и каким он бывает?

Что такое интерфейс - многие думают, что это просто картинка, но в действительности понятие возникло еще со времен первых вычислительных машин. Сегодня термин имеет несколько значений, и у каждого – своя смысловая структура и функциональные составляющие.

Что такое прокси, зачем он нужен и как им пользоваться?

Не всем известно, что такое прокси, хотя мы сталкиваемся с его работой ежедневно. Под термином понимают промежуточное звено между клиентом и сервером, совокупность служб, которые перерабатывают запросы с личных ПК и направляют по адресу.

Лоукостер - что это такое и что нужно знать о лоукостерах?

Информация о том, что такое лоукостер и как правильно им пользоваться, будет полезной для людей, которые любят путешествовать и не хотят при этом тратить много денег. Есть несколько хитростей, важных при планировании поездки.

Root-права на Андроид - в чем их преимущество и как их получить?

Многие пользователи сегодня слышали о таком термине, как root-права на Андроид. Это учетная запись администратора, которая предоставляет возможность перенастроить устройство по своему желанию, минуя все запреты.

womanadvice.ru

Существуют ли квантовые компьютеры на самом деле? — Meduza

Просто: В СМИ опять поднялась шумиха про квантовые компьютеры будущего.

Сложнее: В Google объявили, что принадлежащий компании квантовый компьютер D-Wave решил поставленную задачу в 100 миллионов раз быстрее, чем обычный компьютер. Эта новость стала поводом для нового обсуждения одного из самых ожидаемых технологических прорывов. Разработку настоящего квантового компьютера можно сравнить с мечтой о лекарстве от рака или болезни Альцгеймера, термоядерной энергии и колонизации Марса. «Медуза» попросила научного журналиста Сергея Немалевича объяснить, существуют ли уже настоящие квантовые компьютеры и чем они лучше обычных. 

Просто: Потому что они очень быстрые.

Сложнее: В не очень далеком будущем квантовые компьютеры могут стать необходимостью. Потребности человечества в производительности компьютерных процессоров уже сейчас обгоняют развитие классической электроники. Есть знаменитый закон Мура, описывающий скорость роста производительности процессоров: число транзисторов на кристалле интегральной схемы удваивается каждые два года. Сейчас этот закон уже не совсем выполняется — число транзисторов удваивается раз в 2,5 года. Так или иначе, производительность традиционных процессоров не может расти до бесконечности. Никто не знает, когда понадобится качественный скачок, но рано или поздно он обязательно понадобится. И создание квантового компьютера, способного решать некоторые важные вычислительные задачи гораздо быстрее обычного, — одно из возможных направлений развития. 

Просто: В обычных информация хранится в битах — нулях или единицах, а в квантовых — в кубитах. Кубиты могут как бы находиться одновременно в двух состояниях: содержать ноль и единицу сразу. Благодаря этому теоретически квантовый компьютер может работать быстрее.

Сложнее: Как понятно из названия, квантовый компьютер использует феномены квантовой механики. В микромире, живущем по законам квантовой механики, возможны явления, немыслимые в привычном нам макромире. Например, частица может находиться в суперпозиции — сразу в двух состояниях. Есть популярная метафора: представьте подброшенную в воздух монету, которая одновременно и орел, и решка. Грубо говоря, примерно так же устроена работа кубита — основной единицы хранения информации в квантовом компьютере. 

Другой эффект называется квантовой зацепленностью: состояния двух частиц могут быть взаимосвязаны и меняться одновременно, даже если эти частицы находятся в разных уголках галактики. Благодаря квантовой зацепленности кубиты можно собирать в связанные между собой наборы. Если набор из N классических бит хранит последовательность из N нулей и единиц, то в регистре из N кубит записано несравнимо больше информации — суперпозиция всех возможных последовательностей из N нулей и единиц.

Поймав монету, мы видим, что она выпала либо орлом, либо решкой — вероятность 50 на 50. Так же, измеряя состояние кубита, мы получим ноль, либо один; только — в отличие от монеты — вероятности получения каждого из двух значений не равны. Вот эти вероятности и «записаны» в суперпозиции. А если измерить значение квантового регистра, получится только одна последовательность нулей и единиц, но, опять же, с некоторой вероятностью, которая — в виде коэффициента — хранилась в исходном квантовом состоянии.

Квантовая ячейка памяти содержит не конкретную единицу информации, а набор вероятностей получения любой возможной единицы информации при измерении. И если классический процессор за один такт изменяет последовательность из N нулей и единиц, то квантовый процессор изменяет набор из 2 в степени N вероятностей — в сущности, совершая экспоненциально больше работы. Это свойство называется квантовым параллелизмом, и теоретически квантовый процессор может работать экспоненциально быстрее классического. 

Просто: Не особо.

Сложнее: На самом деле, почти никогда не получается. Во-первых, квантовые вычисления не дают абсолютно точного решения задачи — ответ оказывается правильным только с некоторой вероятностью, и коррекция возможной ошибки отнимает дополнительные вычислительные ресурсы. Во-вторых, когда имеешь дело не с понятными нулями и единицами, а с их громоздкими суперпозициями, приходится исхитряться, даже чтобы реализовать простейшие логические операции. Построение квантовых алгоритмов — теоретическая область, развивающаяся параллельно с попытками инженеров создать для них квантовые компьютеры. Успехов в этом направлении достигнуто больше, в частности, известно, что любой классический алгоритм можно перепрограммировать в квантовый, но число квантовых алгоритмов, которые будут заведомо работать намного быстрее классических (то есть возникнет «квантовое ускорение»), относительно невелико. Самые известные из них — алгоритм Гровера для решения задачи перебора и алгоритм Шора, позволяющий раскладывать число на сомножители. 

Просто: Да, но такие простые, что их квантовость не дает никаких преимуществ. 

Сложнее: Квантовых компьютеров, которые способны решать любую задачу, пока не существует. Большинство исследований сейчас направлено не столько на построение действующих квантовых компьютеров, сколько на отработку базовых технологий, в первую очередь — создания кубитов. Время от времени на регистрах из нескольких кубитов запускаются какие-нибудь квантовые алгоритмы и решаются простенькие задачи, вроде разложения числа 143 на простые множители или осуществления перебора из четырех вариантов. Поскольку базовых проблем остается еще очень много, создавать системы больше, чем из пары десятков кубитов, не имеет особого смысла, а у устройств с меньшим количеством кубитов нет заметных преимуществ перед классическими компьютерами. Особняком здесь стоят устройства канадской компании D-Wave, последнее из которых — с 1152 кубитами внутри — наделало недавно столько шума.

Просто: Квантовые системы очень чувствительны: чуть что, они лишаются своего квантового волшебства, а заодно и всех полезных свойств.

Сложнее: Любое «наблюдение» или «измерение», а в сущности, почти любой контакт с внешней средой приводит к тому, что квантовая система становится классической, это явление называется декогеренцией. Представьте подброшенную монетку, которая от столкновения с любой молекулой воздуха или даже от случайно упавшего на нее взгляда немедленно выпадает орлом или решкой. А уж если в системе несколько запутанных кубит, удержать их от декогеренции еще сложнее — это иногда сравнивают с попыткой поставить множество карандашей вертикально на кончики остро отточенных грифелей. Качественная изоляция квантовой системы от внешней среды — не только инженерно сложная, но и дорогостоящая задача. Даже первые прототипы квантовых вычислителей с несколькими кубитами по размерам напоминают компьютеры середины прошлого века и стоят миллионы долларов. Сейчас разрабатывается несколько конкурирующих технологий реализации кубитов, и самая главная задача — как можно дольше удержать их от декогеренции. 

Просто: Да, они продвинулись дальше других, но в основном в области маркетинга — хорошо продают свои продукты. 

Сложнее: Не особо. Канадская компания D-Wave имеет удивительную историю. В 1999 году физик-инженер и чемпион мира по борьбе джиу-джитсу Джорди Роуз прочитал популярную книгу про квантовые вычисления и увлекся этой идеей. О практической реализации квантовых компьютеров тогда еще мало кто помышлял, но Роуз умудрился привлечь финансирование на создание прототипа квантового вычислителя — не имея ни ноу-хау, ни технологий. Почти все разработки D-Wave вела чужими руками, зато каждый созданный прототип упаковывался в черную коробку (точнее — шкаф) с красивым логотипом, который потом громко представляли на рынке как действующий квантовый компьютер. Научное сообщество морщилось, однако коммерческие гиганты, в том числе Lockheed Martin и Google, устройства D-Wave покупали, не жалея десятков миллионов долларов — на всякий случай. Споры о том, что именно находится в черных ящиках с логотипом D-Wave — и можно ли это назвать квантовым компьютером, не утихают до сих пор.

Просто: Легче сказать, чем они похожи — в них есть кубиты и их почему-то называют квантовыми компьютерами. В остальном почти ничего общего.

Сложнее: Хотя в этих устройствах тоже есть кубиты, они выстроены в специфическую прихотливую архитектуру. В сущности, D-Wave умеет решать одну-единственную оптимизационную задачу, которая соответствует естественной эволюции лежащей в ее основе квантовой системы. Машину нельзя непосредственно заставить сложить два числа, выполнить простейшую логическую операцию, на ней нельзя запустить квантовый алгоритм Шора. Все, что она умеет делать — симулировать саму себя, как если бы для решения задачки из школьного учебника про движение двух поездов навстречу друг другу использовалась система, состоящая их двух настоящих поездов и секундомера. Любопытно, что долго никто не мог даже доказать, что работа D-Wave действительно использует явления квантового мира. Убедиться в этом воочию невозможно (как уже говорилось, квантовые эффекты нельзя наблюдать — они сразу становятся классическими), так что единственный способ — удостовериться, что устройство способно сделать то, на что не способны классические системы, например, работать намного быстрее них. И именно это наконец удалось сделать исследователям из Google.

Просто: Правда. Как и то, что улитка доползет до соседней комнаты быстрее вас, если вы решите попутно обогнуть экватор.

Сложнее: Это правда, но только если сравнивать работу D-Wave с работой классического алгоритма, имитирующего то, что происходит внутри D-Wave по обычным физическим законам. Возвращаясь к примеру с задачкой про поезда, такой алгоритм бы буквально моделировал движение двух поездов, всякий раз проверяя, не встретились ли они. Разумеется, есть способ решить ту же задачу проще и быстрее — подставив нужные значения переменных в несложную формулу. Так же и с D-Wave: машина решила задачу поиска минимума с помощью так называемого квантового отжига, команда Google сравнила результат с работой алгоритма имитации квантового отжига, и да — получилось в сто миллионов раз быстрее. Но для того же вычисления есть другой классический алгоритм Селби, который выполняет его быстрее, чем D-Wave. Об этом, кстати, прямо говорится в статье специалистов Google. Другими словами, D-Wave работает быстрее, когда решает одну узкоспециальную задачу и только если сравнивать ее с работой одного неоптимального классического алгоритма. С практической точки зрения, никакого смысла в этом нет, вожделенного квантового ускорения тоже не наблюдается.

Просто: Нет. Скорее Google убедился, что не надули его.

Сложнее: Отнюдь, все эти подробности явно описаны в статье. Если кто-то кого-то и надул, то это журналисты, поспешившие сообщить о технологической революции. А Google нужно было убедиться, что купленная ими машина хотя бы и впрямь является квантовой — для этого нужно было сравнить скорость ее работы именно с неоптимальной классической имитацией квантового отжига. Теперь никто не сомневается, что в работе D-Wave участвует квантовое явление, а если точнее — так называемый туннельный эффект. Но никто не сомневается, что системе D-Wave не суждено совершить настоящую революцию в квантовых вычислениях — она слишком специфически устроена, ее преимущества очень редко проявляются, с ней не работают уже придуманные квантовые алгоритмы. Скорее всего, по-настоящему большие новости придут не со стороны канадского стартапа, а от одной из сильных академических лабораторий, например, под руководством Джона Мартиниза в университете Санта-Барбары или Криса Монро в университете Мэриленда.

Автор: Сергей Немалевич

meduza.io


Смотрите также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>