Кем была открыта электромагнитная индукция


Электромагнитная индукция – FIZI4KA

ЕГЭ 2018 по физике ›

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​\( S \)​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​\( B \)​, площади поверхности ​\( S \)​, пронизываемой данным потоком, и косинуса угла ​\( \alpha \)​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​\( \Phi \)​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​\( \alpha \)​ магнитный поток может быть положительным (\( \alpha \) < 90°) или отрицательным (\( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​\( N \)​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​\( R \)​:

При движении проводника длиной ​\( l \)​ со скоростью ​\( v \)​ в постоянном однородном магнитном поле с индукцией ​\( \vec{B} \)​ ЭДС электромагнитной индукции равна:

где ​\( \alpha \)​ – угол между векторами ​\( \vec{B} \)​ и \( \vec{v} \).

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно! Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​\( \varepsilon_{is} \)​, возникающая в катушке с индуктивностью ​\( L \)​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​\( \Phi \)​ через контур из этого проводника пропорционален модулю индукции ​\( \vec{B} \)​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​\( L \)​ между силой тока ​\( I \)​ в контуре и магнитным потоком ​\( \Phi \)​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

6. Решение проверить.

fizi4ka.ru

Электромагнитная индукция

01. Электромагнитная индукция – это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Фарадеем в 1831 г.

Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушка, концы которой соединим с гальванометром. Если катушку приблизить к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется – в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. То же самое происходит, если повернуть магнит на 180 градусов, не меняя направления движения катушки.

Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающий при движении проводника.

Рассмотрим случай, когда два параллельных провода АВ и CD замкнуты, справа – разомкнуты. Вдоль проводов может свободно скользить проводящий мостик BC. Когда мостик движется вправо со скоростью v, вместе с ним движутся электроны и положительные ионы. На каждый движущий заряд в магнитном поле действует сила Лоренца . На положительные ион она действует вниз, на отрицательные вверх. В результате электроны начнут перемещаться по мостику вверх, т.е. по нему потечет электрический ток, направленный вниз. Перераспределившись заряды создадут электрическое поле, которое возбудит токи и в остальных участках контураABCD.

Сила Лоренца F в опыте играет роль сторонней силы, возбуждающей электрический ток.

02. Электродвижущая сила индукции (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил в источниках постоянного или переменного тока.

Знак минус поставлен потому, что стороннее поле направлено против положительного обхода контура.

Величина lv есть приращение площади контура ABCD в единицу времени, или скорость приращении этой площади. Поэтому равна

Основной закон электромагнитной индукции.(Дифференциальная форма закона электромагнитной индукции)

При движении замкнутого провода в магнитном поле в нем возбуждается электродвижущая сила, пропорциональная скорости приращения магнитного потока, пронизывающего контур провода.

03. Правило Ленца (принцип Ле Шателье)

Индукционный ток всегда имеет такой направление, что он ослабляет действие причины, возбуждающий этот ток.

Возьмем в магнитном поле замкнутый проволочный виток, положительное направление обхода которого составляет с направлением поля правовинтовую систему. Допустим, что магнитный поток Ф возрастает. Тогда, согласно формуле , величинабудет отрицательна, а индукционный ток в витке потечет в отрицательном направлении. Такой ток, ослабляя внешнее магнитное поле, будет препятствовать возрастанию магнитного потока.

Пусть теперь магнитный поток Ф убывает. Тогда величина станет положительной, а индукционный ток в витке потечет в положительном направлении и будет препятствовать убыванию магнитного поля и магнитного потока.

04. Индуктивность проводов.

Рассмотрим тонкий замкнутый провод, по которому течет постоянный ток I. Внутри провода параллельно его оси проведем произвольный замкнутый математический контур s и установим на нем положительное направление. Если в пространстве нет ферримагнитных тел, то величина B(магнитное поле тока) и Ф(магнитный поток) будут пропорционально току.

здесь - сила тока в гауссовской системе единиц, а- сила тока в системе СГСМ.

  • - самоиндукция, или коэффициент самоиндукции провода. Он не зависит от силы тока, определяется только размерами и конфигурацией самого провода.

Пример: Вычислим индуктивность соленоида. Пусть - длина соленоида,- общее число витков,- площадь одного витка.

Индукция магнитного поля внутри соленоида

Магнитный поток через один виток равен , я черезвитков -т.е.

Получим индуктивность ( в сантиметрах)

Магнитный поток - это поток Ф вектора магнитной индукции B через конечную поверхность S. За единицу магнитного потока принимают максвелл.

Максвелл есть магнитный поток, создаваемый магнитным полем в один гаусс через перпендикулярную к нему площадь в один квадратный сантиметр.

05. Явления при замыкании тока

Процесс замыкания

Пусть цепь состоит из источника постоянного ЭДС, катушки самоиндукции и омического сопротивления. Полную индуктивность цепи обозначим через , а полное сопротивление– через . При замыкании ключа К ток не сразу достигает предельного значения, определяемого законом Ома, а нарастает постепенно. При этом возрастает также магнитный поток, пронизывающий контур цепи. Возникает электродвижущая сила индукции и соответствующий ей индукционный ток. Этот ток называют экстратоком замыкания. Согласно правилу Ленца направление экстратока замыкания противоположно направлению основного тока.

Сила переменного тока не обязательно должна быть одной и той же на всех участках провода, так как в отдельных местах возможно накопление зарядов. Однако мы рассмотрим здесь только такие переменные токи, которые меняются во времени сравнительно медленно. Тогда мгновенные значения токов во всех участках неразветвленной цепи с высокой степенью точности одинаковы, а магнитный поля внутри проводов могут вычисляться по закону Био и Савара, как если бы токи были постоянными. Такие токи называются квазистационарными.

Сила тока определяется выражением

В практических единицах

Дифференциальное уравнение для квазистационарных токов

Если за время изменения тока провода не деформируются, то индуктивность , постоянна и может быть вынесена из-под знака производной

При постоянном значении общее решение этого уравнения имеет вид

Постоянная интегрирования C должна определяться из начального условия: в момент замыкания, т.е. при , то ток равен нулю. Используя это условие, находим. Эта формула применима в любой системе единиц.

Где - постоянная, имеющая размерность времени:

В гауссовской системе единиц:

  • - время установления тока

Полный ток I состоит из двух слагаемых, из которых второе, т.е. , определяет силу экстратока замыкания. Приэкстра ток стремится к нулю, а полный токI – к своему предельному значению . Таким образом, окончательное значение тока устанавливается постепенно. Быстроту установления определяется временем: по истечении временисила экстратока убывает враз.

06. Явления при размыкании тока

Ключ К сначала замкнут. Направление токов показаны сплошными стрелками. Общий ток распределяется между параллельно включенными самоиндукцией и омическим сопротивлением. Если внутреннее сопротивление батареи пренебрежимо мало, то ток в катушке самоиндукции будет равен. После размыкания ключа К замкнутым останется только контур ABCD. Первоначальный ток, существовавший в катушке самоиндукции, обладал определенным запасом магнитной энергии, которая исчезает не сразу. Магнитное поле начнет убывать. Это возбудит электродвижущую силу и индукционный ток в контуре ABCD. Такой ток называется экстратоком размыкания. Экстраток показан пунктирными стрелками. В катушке самоиндукции экстраток течет в том же направлении , что и первоначальный ток, в остальных участках контура ABCD— в противоположном направлении. Если - общее сопротивление контура ABCD, то сила тока определится из дифференциального уравнения

и начального условия: . Это дает, гдеопределяется прежним выражением. Электродвижущая сила индукции равна

Если , то эта величина может значительно превзойти ЭДС батареи. В этом причина электрического пробоя, наблюдающегося иногда при выключении тока в цепях, содержащих большие индуктивности.

Для демонстрации явления можно взять катушку длиной 50-60 см и диаметром 8-10 см сердечником из железных прутьев и обмоткой из нескольких слоев проволоки диаметром около 1 мм. Параллельно катушке присоединена лампочка. Лампочка рассчитана на напряжение, несколько превышающее ЭДС батареи. При замкнутой цепи лампочка горит тускло. При размыкании ключа К она ярко вспыхивает и даже может перегореть, так как ЭДС индукции превосходит в несколько раз ЭДС батареи.

Рассмотрим теперь два витка (или две катушки), по которым текут постоянные токи и. Установим произвольно на этих витках положительные направления обхода. Если в окружающем пространстве нет ферромагнетиков, то магнитные потоки через виткиипропорциональны токам и могут быть представлены в виде

Коэффициенты не зависят от токов, а определяются лишь формой, размерами и взаимным расположением витков. Они называются коэффициентами индуктивности. Если. Поэтомуесть индуктивность первого, а- второго витка. Оставшиеся два коэффициентаиназываются взаимными индуктивностями или коэффициентами взаимной индукции.

07. Энергия магнитного поля.

Электрический ток обладает запасом энергии, называемой магнитной.

Магнитная энергия может зависеть только от величины и распределения токов, а таксисе от магнитных свойств среды, заполняющей пространство.

Рассмотрим сначала одиночный неподвижный замкнутый виток проволоки. Пусть в начальный момент сила тока в нем равна нулю. Будем каким-либо способом создавать и наращивать ток в витке . Тогда будет нарастать и магнитный поток через виток Ф. Возникнет электродвижущая сила индукции. Элементарная работа, которую должен совершить внешний источник против электродвижущей силы индукции, будет

Полученное соотношение носит общий характер. Оно справедливо и для ферромагнитных материалов, так как при его выводе относительно магнитных свойств среды не вводилось никаких предположений. Однако если среда не обладает гистерезисом, в частности является пара- или диамагнитной, то работа пойдет только на увеличение магнитной энергии, так что

Предположим, что ферромагнетики отсутствуют. Тогда причем для неподвижного провода самоиндукция L остается постоянной. Используя это и интегрируя, получим

Для справедливости формулы несущественно, что во время нарастания тока виток оставался неподвижным, так как энергия зависит от состояния системы, но не от способа, каким было достигнуто это состояние

Формула для произвольного числа витков. Предположим, что все витки неподвижны, будем увеличивать токи в них. Тогда для элементарной работы против электродвижущей силы индукции будет:

Магнитная энергия в конечном состоянии представится интегралом:

, где текущее значения соответствующих величин

Для упрощения расчета будем наращивать все токи одновременно и притом так, чтобы они оставались пропорциональными друг другу. Таким образом, в любой момент будет соблюдаться соотношение - переменная величина, не зависящая отi. В начальном состоянии , в конечном. Так как при отсутствии ферромагнитных материалов магнитные потоки связаны с токами линейно, то для них справедливы такие же соотношения, т. е.. Таким образом

или после интегрирования

08. Локализация магнитной энергии в пространстве.

Выражение для магнитной энергии можно преобразовать в другую форму, которая соответствует иному представлению о месте нахождения энергии. Покажем это на примере длинного соленоида, по поверхности которого циркулирует ток с линейной плотностью . Пренебрегая краевыми эффектами, можно написать для поля Н внутри соленоида. ПустьS – площадь поперечного сечения соленоида. Тогда , получим

Если - магнитная энергия, приходящаяся на единицу объема соленоида, то для ее дифференциала можно написать

В случае пара- и диамагнитных сред и выражение можно проинтегрировать

В общем случае постоянных электрических токов выражение для магнитной энергии можно преобразовать. Считая ток неподвижным и полагая в формуле , получим

Вектор А и называется векторным потенциалом магнитного поля. Используя это соотношение и применяя теорему Стокса, находим

Вместо линейного введем объемный элемент тока и воспользуемся теоремой о циркуляции

09. Основы теории Максвелла. Ток смещения.

Основные уравнения электромагнитного поля в неподвижных средах, применимые не только к постоянным, но и к переменным электромагнитным полям, были установлены Максвеллом. К уравнениям Максвелла можно прийти путем последовательного обобщения опытных фактов.К основным уравнениям электродинамики присоединим закон сохранения электрического заряда. В дифференциальной форме он имеет вид

Если электромагнитное поле стационарно, то уравнение переходит

Теорема о циркуляции

также может быть преобразована в дифференциальную форму

Эти соотношения верны только для стационарных токов.

Чтобы прийти к обобщенным уравнениям, воспользуемся следующим наводящим рассуждением. Поскольку дивергенция левой части уравнения тождественно равна нулю, в правой части этого уравнения должен стоять вектор, дивергенция которого также всегда равна нулю. В случае стационарных электромагнитных полей этот вектор должен переходить в j. Легко указать вектор, удовлетворяющий этим условиям. Дифференцируя по времени соотношениеполучаем

- ток смещения

Таким образом , т.е полный ток всегда соленоидален.

Если в уравнении ток проводимостиj заменить полным током

Для обобщения уравнений и

В вакууме всякое изменение электрического поля во времени возбуждает в окружающем пространстве магнитное поле.

10. Система уравнений Максвелла.

Система фундаментальных уравнений электродинамики

В дифференциальной форме:

теорема о циркуляции + ток смещения

закон электромагнитной индукции

теорема Гаусса в веществе

теорема Гаусса для магнитного поля

В Интегральной форме:

Уравнения Максвелла показывают, что источниками электрического поля могут быть либо электрические заряды, либо магнитные поля, меняющиеся во времени. Магнитные же поля могут возбуждаться либо движущимися электрическими зарядами {электрическими токами), либо переменными электрическими полями.

11. Граничные условия.

Уравнения Максвелла в интегральной форме справедливы и в тех случаях, когда существуют поверхности разрыва, на которых свойства среды или напряженности электрического и магнитного полей меняются скачкообразно. Поэтому в этой форме уравнения Максвелла обладают большей общностью, чем в дифференциальной форме, которая предполагает, что все величины в пространстве и во времени меняются непрерывно. Можно, однако, достигнуть полной математической эквивалентности обеих форм уравнений Максвелла. Для этого надо дифференциальные уравнения дополнить граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред. Эти условия содержатся в интегральной форме уравнений Максвелла. Они были выведены в соответствующих местах курса и имеют вид

Здесь - поверхностная плотность тока проводимости на рассматриваемой границе раздела, а i - поверхностная плотность тока проводимости на рассматриваемой границе раздела. В частном случае, когда поверхностных токов нет, последнее условие переходит в.

12. Материальные уравнения.

Принципиальный способ получения материальных уравнений дают молекулярные теории поляризации, намагничивания и электрической проводимости среды. В основе таких теорий лежат какие-то идеализированные модели среды. Применяя к ним уравнения классической или квантовой механики, а также методы статистической физики, можно установить связь между векторами Р, I, j, с одной стороны, и векторами Е и В — с другой. Таким путем, в зависимости от характера среды и электромагнитного поля, получаются более или менее сложные соотношения, которые и дополняют фундаментальные уравнения Максвелла до полной системы уравнений электродинамики. Наиболее просты материальные уравнения в случае слабых электромагнитных полей, сравнительно медленно меняющихся в пространстве и во времени. В этом случае для изотропных неферромагнитных и несегнетоэлектрических сред материальные уравнения могут быть записаны в виде

, где - постоянные, характеризующие электромагнитные свойства среды. Они называются диэлектрической и магнитной проницаемостью и электрической проводимостью среды.

Когда поля стационарны , уравнения Максвелла распадаются на две группы независимых уравнений. Первую группу составляют уравнения электростатики

вторую — уравнения магнитостатики

В этом случае электрическое и магнитное поля независимы друг от друга. Источниками электрического поля будут только электрические заряды, источниками магнитного поля — только токи проводимости.

13. Электромагнитные волны.

электромагнитные волны, или возмущения, распространяющиеся в пространстве с определенной скоростью.

Рассмотрим бесконечно протяженную однородную диэлектрическую среду с диэлектрической и магнитной проницаемостями и. Поместим в нее бесконечную равномерно заряженную плоскость, которую примем за координатную плоскость XY

studfiles.net

Открытие электромагнитной индукции

Явление электромагнитной индукции было открыто Майлом Фарадеем в 1831 году. Еще за 10 лет до этого Фарадей думал о способе превратить магнетизм в электричество. Он считал, что магнитное поле и электрическое поле должны быть как-то связаны.

Например, с помощью электрического поля можно намагнитить железный предмет. Наверное, должна существовать возможность с помощью магнита получить электрический ток.  

Сначала Фарадей открыл явление электромагнитной индукции в неподвижных относительно друг друга проводниках. При возникновении в одной из них тока в другой катушке тоже индуцировался ток. Причем в дальнейшем он пропадал, и появлялся снова лишь при выключении питания одной катушки. 

Через некоторое время Фарадей на опытах доказал, что при перемещении катушки без тока в цепи относительно другой, на концы которой подается напряжение, в первой катушке тоже будет возникать электрический ток.

Следующим опытом было введение в катушку магнита, и при этом тоже в ней появлялся ток. Данные опыты показаны на следующих рисунках.

рисунок

Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.

Чем больше будет это изменение, тем сильнее получится индукционный ток. Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки. А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.

Формулировка закона

Подведем краткий итог. Явление электромагнитной индукции – это явление возникновения тока в замкнутом контуре, при изменении магнитного поля в котором находится этот контур.

Для более точной формулировки закона электромагнитной индукции необходимо ввести величину, которая бы характеризовала магнитное поле – поток вектора магнитной индукции.

Магнитный поток

Вектор магнитной индукции обозначается буквой B. Он будет характеризовать магнитное поле в любой точке пространства. Теперь рассмотрим замкнутый контур, ограничивающий поверхность площадью S. Поместим его в однородное магнитное поле.

рисунок

Между вектором нормали к поверхности и вектором магнитной индукции будет некоторый угол а. Магнитный поток Ф через поверхность площадью S называется физическая величина, равная произведению модуля вектора магнитной индукции на площадь поверхности и косинус угла между вектором магнитной индукции и нормалью к контуру.

Ф = B*S*cos(a).

Произведение B*cos(a) является проекцией вектора В на нормаль n. Поэтому форму для магнитного потока можно переписать следующим образом:

Ф = Bn*S.

Единицей измерения магнитного потока является вебер. Обозначается 1 Вб. Магнитный поток в 1Вб создается магнитным полем с индукцией 1 Тл через поверхность площадь 1 м^2, которая расположена перпендикулярно вектору магнитной индукции.

Нужна помощь в учебе?

Предыдущая тема: Закон Ома для переменного тока: примеры выражений и формулы Следующая тема:   Направление индукционного тока: правило Ленца и опыт
Твитнуть Нравится Нравится

Все неприличные комментарии будут удаляться.

www.nado5.ru

40) Явление электромагнитной индукции

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Особенности явления:

  1. чем быстрее изменится число линий магнитной индукции, тем больше возникающий ток;

  2. независимость явления возникновения индукционного тока от причины изменения числа линий магнитной индукции.

Практическое значение явления:

Фарадей первым сконструировал несовершенную модель генератора электрического тока, превращающего механическую энергию вращения в ток, состоящую из медного диска, вращающегося между полюсами сильного магнита. Зафиксированный гальванометром ток был слаб, но было сделано самое важное: найден принцип построения генераторов тока.

М. Фарадей (1791-1867) открыл явление электромагнитной индукции. Для раскрытия сущности этого явления введем понятие потока вектора магнитной индукции через поверхность площадью дельта S. Эта величина равна произведению модуля вектора магнитной индукции В на площадь AS и косинус угла амежду векторами В и n (нормалью к поверхности):

Произведение В • cos а= Вnпредставляет собой проекцию вектора магнитной индукции на нормаль к элементу площади. Поэтому дельта Ф = Вп• AS. Поток может быть как положительным, так и отрицательным в зависимости от угла а.

Если магнитное поле однородное, то поток через плоскую поверхность площадью S равен:

В замкнутом проводящем контуре возникает ток при изменении магнитного потока, пронизывающего поверхность, ограниченную этим контуром. Этот ток получил название индукционного тока, а само явление возникновения тока в проводящем контуре при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром, назвали явлением электромагнитной индукции.

В электрической цепи появляется ток, если на свободные заряды действуют электрические силы. Следовательно, при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром, в контуре возникает электродвижущая сила, ЭДС индукции еiЗакон электромагнитной индукции утверждает, что ЭДС индукции в замкнутом контуре численно равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Направление индукционного тока определяется правилом (законом) Э. X. Ленца (1804-1865), которое утверждает: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, стремится препятствовать тому изменению потока, которое порождает данный ток. Закон Ленца есть следствие закона сохранения энергии.

Дж. Максвеллом было высказано следующее фундаментальное свойство магнитного поля: изменяясь во времени, магнитное поле порождает электрическое поле. Это электрическое поле имеет совсем другую структуру, чем электростатическое. Линии напряженности возникшего электрического поля представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Такое поле называют вихревым электрическим полем. Вихревое электрическое поле действует на электрические заряды, так же как и электростатическое F = q • Е, где E - напряженность вихревого поля. В отличие от статического или стационарного электрического поля работа вихревого поля на замкнутом пути не равна нулю. Вихревое электрическое поле, так же, как и магнитное, непотенциально.

Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Если проводник длиной lперемещать в магнитном поле с индукцией В, направленной перпендикулярно скорости перемещения, то магнитная сила Лоренца разделяет электрические заряды проводника и между его концами возникает ЭДС индукции, равная ei=lvE.

Возникновение изменяющегося магнитного поля создает ЭДС индукции в том контуре, по которому течет ток, создающий это изменяющееся поле. Такое явление назвали самоиндукцией.

Магнитный поток, проходящий через контур, прямо пропорционален силе тока в контуре:

Физическая величина, равная отношению магнитного потока, проходящего через контур, к силе тока в контуре, называется индуктивностьюэтого контура:

ЭДС, возникающая в контуре, при изменении силы тока, протекающего по контуру, называется ЭДС самоиндукции.

По закону электромагнитной индукции ЭДС самоиндукции равна 

За единицу индуктивности в СИ принимается 1 генри (1 Гн), это индуктивность такого контура, в котором при равномерном изменении силы тока в цепи со скоростью 1 А за 1 с возникает ЭДС самоиндукции, равная 1 В:

studfiles.net


Смотрите также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>